• Title/Summary/Keyword: ion-plating

Search Result 323, Processing Time 0.027 seconds

Effect of Plating Conditions on Internal Stress of Nickel Electrodeposits (電析니켈에 있어서 電着條件이 內部應力에 미치는 影響)

  • Koh, Suck-Soo
    • Journal of Surface Science and Engineering
    • /
    • v.13 no.4
    • /
    • pp.211-220
    • /
    • 1980
  • Internal stress of electrodeposited metals affect physical and mechanical characteristics of deposits. Internal stress of nickel deposits was reviewed intensively. Important outcomes are as follows. Substrate have an important effect on internal stress of electrodeposit. Origin of its internal stress could be explained mismatch of crystal lattice and coalescence of crystallites. When surface cleaning is not satisfying, instantaneous stress is low but the electrodeposited layer being thickened increasingly stress become to high and peeling phenomenon occurs. Effect of current density and temperature on internal stress is variable. Internal stress increases rapidly at pH 5 and above because of codepositing colloidal materials caused hydrolysis. Concentrations of nickel ion and $H_3BO_3$ ion affect little on internal stress and solution which contains impurities tend to increase stress. Especially impurities of $H_2O_2$ and iron ion have a great effect on internal stress. Additives are divided in two kind. One is increasing tensile stress another is increasing compressive stress. Concentrations of additives have a great effect on internal stress.

  • PDF

Effect of Calcium Ion on Mesophyll Protoplast Culture of Arabidopsis thaliana (Arabidopsis thaliana의 엽육세포 원형질체배양에 미치는 칼슘이온의 영향)

  • 박현용
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.5
    • /
    • pp.277-281
    • /
    • 1995
  • The present study was performed to investigate the effect of calcium ion on the mesophyll protoplast culture of Arabidopsis thaliana. The mesophyll protoplase were isolated and cultured on an IMH medium supplemented with CaCl$_2$of various concentrations. When the protoplasts were cultured on the medium containing 0 to 12.5 mM CaCl$_2$, extreme vacuolization occurred without cell division. When the protoplasts were cultured with higher levels of CaCl$_2$ up to 50 mM, vacuolization decreased dose-dependent): and the number of plasma-rich cells increased. Cell division was induced when the protoplast were cultured on the medium with CaCl$_2$ higher than 25 mM. The highest plating efficiency (5-6%) was obtained with 50 mM CaCl$_2$. However the plating efficiency was markedly inhibited by 100mM CaCl$_2$ or above. These resole suggest that the relatively high concentration (50 mM) of calcium ion may be required for the culture of protoplasts.

  • PDF

Preparation of New Corrosive Resistive Magnesium Coating Films (고내식성의 신 마그네슘 코팅막 제작)

  • Lee, Myeong-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.103-113
    • /
    • 1996
  • The properties of the deposited film depend on the deposition condition and these, in turn depend critically on the morphology and crystal orientation of the films. Therefore, it is important to clarify the nucleation occurrence and growth stage of the morphology and orientation of the film affected by deposition parameters, e.g. the gas pressure and bias voltage etc. In this work, magnesium thin flims were prepared on cold-rolled steel substrates by a thermo-eletron activation ion plating technique. The influence of nitrogen gas pressure and substrate bias voltage on their crystal orientation and morphology of the coated films were investigated by scanning electron microscopy (SEM) and X-ray diffraction, respectively. The diffraction peaks of magnesium film became less sharp and broadened with the increase of nitrogen gas pressure. With an increase in nitrogen gas pressure, flim morphology changed from colum nar to granular structure, and surface crystal grain-size decreased. The morphology of films depended not only on gas pressure but also on bias voltage, i.e., the effect of increasing bias voltage was similar to that of decreasing gas pressure. The effect of crystal orientation and morphology of magnesium films on corrosion behaviors was estimated by measuring anodic polarization curves in deaerated 3%NaCl solution. Magnesium, in general, has not a good corrosion resistance in all environments. However, these magnesium films prepared by changing nitrogen gas pressure showed good corrosion resistance. Among the films, magnesium films which exhibited granular structure had the highest corrosion resistance. The above phenomena can be explained by applying the effects of adsorption, occlusion and ion sputter of nitrogen gas.

  • PDF

Recovery of Heavy Metals using Oxidized Undaria pinnatifida in Plating Wastewater

  • Park, Jae-Yeon;Jeon, Chung;Yu, Yeong-Je
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.357-360
    • /
    • 2000
  • Biosorption process is an economic and potential process for metal sequestering from the water. The oxidized Undaria pinnatifida by nitric acid had high uptake capacity for heavy metals of 4 - 6 meq / g dry mass. For the application of oxidized Undaria pinnatifida, recovery of metal in plating wastewater was studied. The uptake capacity of the oxidized Undaria pinnatifida was high compared to the ion exchanger IR-120 plus. The treatment efficiency of chromium and copper in the wastewater was 85% In batch. Activated carbon was used to assist the recovery of water by removing organic matters of the wastewater.

  • PDF

Tendency of PVD coating technology on Metal cutting tools (금속 절삭공구에 대한 PVD 코팅기술의 동향)

  • Kim, Jong-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.11-17
    • /
    • 2001
  • Industrial use of physical vapor deposition(PVD) has been widely expanded during last two decades, and in the mean time plasma assistance in PVD has become an essential tool in preparing compound films with dense microstructure. The principles of electron beam-based plating, balanced and unbalanced magnetron sputtering and cathodic arc deposition. consisting three basic configuration of plasma assisted PVD(PAPVD)process, were reviewed. Recent technical development in PVD coating process were discussed. This paper tries to show tendency for developing new coating film on cutting tools.

  • PDF

INVESTIGATION OF MULTI-ARC PLASMA PLATING FILM EQUIPMENT BULAT-6 AND ITS TECHNICAL CHARACTERISTICS

  • Wen Xueya;Ma Te2ngcai;Hu Shejun
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.133-136
    • /
    • 1997
  • In this paper multi-arc plasma plating film equipment Bulat-6 and its technical characteristics were analyzed in detail. This machine is the first of its kind in China. Influential factors and reducing methods on microdroplets of titanium were investigated. By method of electromagnetic field control and ion beam enhanced deposition excellent titanium nitride film could be obtained. Bicrohardness and adhesion were 250Mpa and 6.5Kg respectively.

  • PDF

The Oxidation of CrN Films Arc-ion Plated on a Steel Substrate (강 기판위에 아크이온 플레이팅된 CrN박막의 산화)

  • Lee, Dong-Bok;Lee, Yeong-Chan
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.324-328
    • /
    • 2001
  • CrN films were deposited onto STD61 steel substrates using an arc-ion plating apparatus, with and without ion-nitriding pretreatment, and their oxidation was studied between 700 and $900^{\circ}C$ for 40hr in air. The oxidation behavior was examined by thermogravimetric analyses, X-ray diffraction. EDS and SEM. The deposited CrN films consisted of CrN and $Cr_2$N phases. The CrN films increased the oxidation resistance of the substrate by forming a protective $Cr_2$$O_3$ layer. The ion-nitriding pretreatment has not affected the oxidation resistance of the CrN film.

  • PDF

Improvement of the Throwing Power (TP) and Thickness Uniformity in the Electroless Copper Plating (무전해 동도금 Throwing Power (TP) 및 두께 편차 개선)

  • Seo, Jung-Wook;Lee, Jin-Uk;Won, Yong-Sun
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • The process optimization was carried out to improve the throwing power (TP) and the thickness uniformity of the electroless copper (Cu) plating, which plays a seed layer for the subsequent electroplating. The DOE (design of experiment) was employed to screen key factors out of all available operation parameters to influence the TP and thickness uniformity the most. It turned out that higher Cu ion concentration and lower plating temperature are advantageous to accomplish uniform via filling and they are accounted for based on the surface reactivity. To visualize what occurred experimentally and evaluate the phenomena qualitatively, the kinetic Monte Carlo (MC) simulation was introduced. The combination of neatly designed experiments by DOE and supporting theoretical simulation is believed to be inspiring in solving similar kinds of problems in the relevant field.

Effect of Si Content on the Phase Formation Behavior and Surface Properties of the Cr-Si-Al-N Coatings (Cr-Si-Al-N 코팅의 상형성 및 표면 물성에 미치는 Si 함량의 영향)

  • Choi, Seon-A;Kim, Hyung-Sun;Kim, Seong-Won;Lee, Sungmin;Kim, Hyung-Tae;Oh, Yoon-Suk
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.6
    • /
    • pp.580-586
    • /
    • 2016
  • Cr-Si-Al-N coating with different Si content were deposited by hybrid physical vapor deposition (PVD) method consisting of unbalanced magnetron (UBM) sputtering and arc ion plating (AIP). The deposition temperature was $300^{\circ}C$, and the gas ratio of $Ar/N_2$ were 9:1. The CrSi alloy and aluminum targets used for arc ion plating and sputtering process, respectively. Si content of the CrSi alloy targets were varied with 1 at%, 5 at%, and 10 at%. The phase analysis, composition and microstructural analysis performed using x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) including energy dispersive spectroscopy (EDS), respectively. All of the coatings grown with textured CrN phase (200) plane. The thickness of the Cr-Si-Al-N films were measured about $2{\mu}m$. The friction coefficient and removal rate of films were measured by a ball-on-disk test under 20N load. The friction coefficient of all samples were 0.6 ~ 0.8. Among all of the samples, the removal rate of CrSiAlN (10 at% Si) film shows the lowest values, $4.827{\times}10^{-12}mm^3/Nm$. As increasing of Si contents of the CrSiAlN coatings, the hardness and elastic modulus of CrSiAlN coatings were increased. The morphology and composition of wear track of the films was examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy, respectively. The surface energy of the films were obtained by measuring of contact angle of water drop. Among all of the samples, the CrSiAlN (10 at% Si) films shows the highest value of the surface energy, 41 N/m.

Effect of Polyethylene Glycol on Cu Electrodeposition (구리전해도금에서 폴리에틸렌글리콜(polyethylene glycol)의 영향 연구)

  • An, Eui Gyeong;Choi, Sun Gi;Lee, Jaewon;Cho, Sung Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.113-118
    • /
    • 2022
  • In this study, the effect of polyethylene glycol (PEG) on Cu electrodeposition was analyzed using cyclic voltammetry. The adsorption of PEG was affected by the specific adsorption of sulfate ion (SO42-) or chloride ion (Cl-). In SO42--based plating solution, the adsorption of PEG was limited by the adsorbed SO42-. Accordingly, the adsorbed PEG could suppress the electron transfer for Cu electrodeposition, but its effect was not significant. Meanwhile, in the plating solution composed of perchlorate ion (ClO4-) which does not specifically adsorb on Cu surface, a strong suppression effect of PEG was observed and it was proportional to the molecular weight of PEG. On the other hand, when Cl- was specifically adsorbed on Cu surface, the suppression effect of PEG was enhanced because PEG and Cl- formed an interrelated adsorbate. The synergetic effect of PEG and Cl- depended on the composition of the plating solution, which means that the synergy between PEG and Cl- is based on the physical interaction. For example, the hydrophobicity of PEG plays an important role in the interaction, as the suppression effect of PEG derivative having a hydrocarbon tail was further enhanced with the addition of Cl-.