DOI QR코드

DOI QR Code

Improvement of the Throwing Power (TP) and Thickness Uniformity in the Electroless Copper Plating

무전해 동도금 Throwing Power (TP) 및 두께 편차 개선

  • Seo, Jung-Wook (Manufacturing & Engineering Center, Samsung Electro-Mechanics Co., Ltd.) ;
  • Lee, Jin-Uk (Corporate R&D Institute, Samsung Electro-Mechanics Co., Ltd.) ;
  • Won, Yong-Sun (Department of Chemical Engineering, Pukyong National University)
  • 서정욱 (삼성전기주식회사 생산기술센터) ;
  • 이진욱 (삼성전기주식회사 중앙연구소) ;
  • 원용선 (국립부경대학교 화학공학과)
  • Received : 2011.05.03
  • Accepted : 2011.05.31
  • Published : 2011.06.30

Abstract

The process optimization was carried out to improve the throwing power (TP) and the thickness uniformity of the electroless copper (Cu) plating, which plays a seed layer for the subsequent electroplating. The DOE (design of experiment) was employed to screen key factors out of all available operation parameters to influence the TP and thickness uniformity the most. It turned out that higher Cu ion concentration and lower plating temperature are advantageous to accomplish uniform via filling and they are accounted for based on the surface reactivity. To visualize what occurred experimentally and evaluate the phenomena qualitatively, the kinetic Monte Carlo (MC) simulation was introduced. The combination of neatly designed experiments by DOE and supporting theoretical simulation is believed to be inspiring in solving similar kinds of problems in the relevant field.

전기도금의 seed layer를 형성하는 무전해 동도금 공정의 throwing power (TP)와 두께 편차를 개선하기 위한 공정 최적화 방법을 제시하였다. 실험계획법 (DOE)을 이용하여 가능한 모든 공정 인자들 가운데 TP와 두께 편차에 가장 큰 영향을 미치는 주요 인자를 파악해 보았다. 균일성을 가진 via filling을 위해서는 도금액 내의 Cu 이온의 농도를 높여주고 도금 온도를 낮추어 주는 것이 바람직한 것으로 판단되었으며 이는 표면 반응성의 측면에서 설명되었다. Kinetic Monte Carlo (MC) 모사가 이를 시각화하기 위해 도입되었으며 실험에서 관찰된 현상을 정성적으로 무리 없이 설명할 수 있었다. 실험계획법을 이용한 체계적인 실험과 이를 뒷받침하는 이론적인 모사가 결합된 본 연구의 접근법은 관련 공정에서 유용하게 활용될 수 있을 것이다.

Keywords

References

  1. Webb, E., Witt, C., Andryuschenko, T., and Reid, J., "Integration of Thin Electroless Copper Films in Copper Interconect Metallization," J. Appl. Electrochem., 34, 291-300 (2004). https://doi.org/10.1023/B:JACH.0000015618.02583.f7
  2. Kobayashi, T., Kawasaki, J., Mihara, K., and Honma, H., "Via-Filling Using Electroplating for Buid-up PCBs," Electrochimica Acta, 47, 85-89 (2001). https://doi.org/10.1016/S0013-4686(01)00592-8
  3. Hsu, H.-H., Lin, K.-H., Lin, S.-J., and Yeh, J.-W., "Electroless Copper Deposition for Ultralarge-Scale Integration," J. Electrochem. Soc., 148(1), C47-C53 (2001). https://doi.org/10.1149/1.1344538
  4. Nakano, H., Suzuki, H., Haba, T., Yoshida, H., Chinda, A., and Akahoshi, H., "Advanced Trench Filling Process by Selective Copper Electrodeposition for Ultra Fine Printed Wiring Board Fabrication," Electronic Components and Technology Conference, 612-616 (2010).
  5. Huemoeller, R., Rusli, S., Chiang, S., Chen, T. Y., Baron, D., Brandt, L., and Roelfs B., "Packaging Substrate Solution for Next Generation Products," Advancing Microelectronics, 34, 22-26 (2007).
  6. Kim, J. J., Kim, S.-K., Lee, C. H., and Kim, Y. S., "Investigation of Various Copper Seed Layers for Copper Electrodeposition Applicable To Ultralarge-Scale Integration Interconnection," J. Vac. Sci. Technol. B, 21, 33-38 (2003). https://doi.org/10.1116/1.1529654
  7. Tarja, R.-V., and Timo, J., "New Materials and Build-up Constructions for Advanced Rigid-Flex PCB Applications," Circuit World, 31, 21-24 (2005).
  8. Shimot, T., Matsui, K., Kikuchi, K., Shimada, Y., and Utsumi, K., "New High-Density Multilayer Technology on PCB," Advanced Packaging, 22, 116-122 (1999). https://doi.org/10.1109/6040.763181
  9. He, W., Cui, H., Mo, Y. Q., Wang, S. X., He, B., Hu, K., Guan, J., Liu, S. L., and Wang, Y., "Producing Fine Pitch Substrate of COF by Semiadditive Process and Pulse Reverse Plating of Cu," Transact. Instit. Metal Finishing, 87, 33-37 (2009). https://doi.org/10.1179/174591908X371186
  10. Shih, C.-W., Wang, Y.-Y., and Wan, C.-C., "Anisotropic Copper Etching with Monoethanolamine-Complexed Cupric Ion Solutions," J. Appl. Electrochem., 33, 403-410 (2003). https://doi.org/10.1023/A:1024408105251
  11. Xiao, R.F., Alexander, J. I. D., and Rosenberger, F., "Growth Morphologies of Crystal Surfaces," Phys. Rev. A, 43, 2977-2992 (1991). https://doi.org/10.1103/PhysRevA.43.2977
  12. Meng, B., and Weinberg, W. H., "Dynamical Monte Carlo Studies of Molecular Beam Epitaxial Growth Models: Interfacial Scaling and Morphology," Surf. Sci., 364, 151-163 (1996). https://doi.org/10.1016/0039-6028(96)00597-3
  13. Levi, A. C., and Kotrla, M. J., "Theory and Simulation of Crystal Growth," J. Phys.: Condens. Matter., 9, 299-344 (1997). https://doi.org/10.1088/0953-8984/9/2/001
  14. Wadley, H. N. C., Zhou, X., Johnson, R. A., and Newrock, M., "Mechanisms, Models and Methods of Vapor Deposition," Progr. Mater. Sci., 46, 329-377 (2001). https://doi.org/10.1016/S0079-6425(00)00009-8