• Title/Summary/Keyword: inverter control system

Search Result 1,563, Processing Time 0.028 seconds

A New Single-Phase Asymmetrical Cascaded Multilevel DC-Link Inverter

  • Ahmed, Mahrous;Hendawi, Essam
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1504-1512
    • /
    • 2016
  • This paper presents a new single-phase asymmetrical cascaded multilevel DC-link inverter. The proposed inverter comprises two stages. The main stage of the inverter consists of multiple similar cells, each of which is a half-bridge inverter consisting of two switches and a single DC source. All cells are connected in a cascaded manner with a fixed neutral point. The DC source values are not made equal to increase the performance of the inverter. The second circuit is a folded cascaded H-bridge circuit operating at a line frequency. One of the main advantages of this proposed topology is that it is a modular type and can thus be extended to high stages without changing the configuration of the main stage circuit. Two control schemes, namely, low switching with selective harmonic elimination and sinusoidal pulse width modulation, are employed to validate the proposed topology. The detailed approach of each control scheme and switching pulses are discussed in detail. A 150W prototype of the proposed system is implemented in the laboratory to verify the validity of the proposed topology.

Inverter Control algorithm for UPS using Dead-Beat controller with disturbance Observer (외란 관측기와 Dead-Beat 제어기를 이용한 UPS 인버터 제어 알고리즘)

  • Jang, J.Y.;Song, J.H.;Choy, I.;Choi, J.Y.;Yoo, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1196-1198
    • /
    • 2000
  • In this paper, a new approach for digital feedback control of PWM inverter is proposed, in which an output DB(Dead-Beat) control is achieved combined with a simple disturbance observer. The deadbeat controller, which is constructed multiple loop control scheme for PWM inverter, is used for fast transient response. The disturbance observer can make the disturbances be cancelled by adding feedforward compensating loop in controller. The simulation result show the proposed control scheme can achieved good voltage regulation against large load variations.

  • PDF

Design and Stability Analysis of a Fuzzy Adaptive SMC System for Three-Phase UPS Inverter

  • Naheem, Khawar;Choi, Young-Sik;Mwasilu, Francis;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.704-711
    • /
    • 2014
  • This paper proposes a combined fuzzy adaptive sliding-mode voltage controller (FASVC) for a three-phase UPS inverter. The proposed FASVC encapsulates two control terms: a fuzzy adaptive compensation control term, which solves the problem of parameter uncertainties, and a sliding-mode feedback control term, which stabilizes the error dynamics of the system. To extract precise load current information, the proposed method uses a conventional load current observer instead of current sensors. In addition, the stability of the proposed control scheme is fully guaranteed by using the Lyapunov stability theory. It is shown that the proposed FASVC can attain excellent voltage regulation features such as a fast dynamic response, low total harmonic distortion (THD), and a small steady-state error under sudden load disturbances, nonlinear loads, and unbalanced loads in the existence of the parameter uncertainties. Finally, experimental results are obtained from a prototype 1 kVA three-phase UPS inverter system via a TMS320F28335 DSP. A comparison of these results with those obtained from a conventional sliding-mode controller (SMC) confirms the superior transient and steady-state performances of the proposed control technique.

Development of Static Inverter for the Light Rail Transit (경량전철용 보조전원장치의 개발)

  • 이은규;염상구;최재호
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.522-527
    • /
    • 2002
  • This paper proposes 40 [KVA] rated SW(Static Inverter) system for Light Rail Transit. The SIV provide power of a fluorescent light in the car, Air-conditioner, and other equipments. To control output voltage it is used voltage control loop for constant voltage control and simultaneously used current control loop for instantaneous control at load changing. The performance of SW system will be verified by experimental results.

  • PDF

Countermeasure on the Suppression of Micro Surge and Noise for a Induction Motor Driven by Commercial Inverter (상용인버터 구동 유도전동기의 마이크로 서지 및 노이즈 억제에 관한 대책)

  • Kim, Duk-Hyun;Choi, Jeong-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.111-117
    • /
    • 2008
  • Generally, speed control for Induction motor widely used in industrial field is accomplished by commercial inverter. Induction motor driven by commercial inverter causes the micro surge voltage because of high speed switching of inverter. Micro surge brings about not only the breakdown of motor but also noise in PLC control system. And they court the enormous interference in activity for production. In this paper, we suggest the suppressible countermeasure for the breakdown of motor after the consideration of productive mechanism about micro surge. Experiment is performed by inverter with LCR filler in its output terminal. As a result, we confirmed that micro surge voltage is reduced. And the suppressible countermeasure for the noise of PLC control system is suggested by theoretical consideration.

Development of Inverter Monitoring system (소형 인버터 모니터링 시스템 개발)

  • Myoung, Hee-Chul;Park, Dong-Ho;Kim, Jung-Han
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1049-1051
    • /
    • 2002
  • Recently, automation and communication technology leads to change of working condition to safe and convenient. Inverter control and monitoring software needs to apply and update to inverter applicable fields to make people feel easy and comfortable on working install systems and drive them, in this paper, we introduced design methods of communication software and developed inverter control and monitoring system which can control and monitor inverters with serial communication.

  • PDF

Frequency Follow-up Control System of Resonant Load MOSFET Inverter using PLL (PLL을 이용한 공진부하 MOSFET 인버어터의 주파수 추종제어계)

  • Kim, Joon-Hong;Joong-Hwan kim
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.7
    • /
    • pp.272-277
    • /
    • 1986
  • The system that follows to the resonance frequency of high frequency MOSFET inverter and varies according to the changes of load characteristics is proposed. Also we suggested a method how to select the resonant load type between series and parallel circuit for a given inverter type. It leads to the conclusion that in the case of high impedance loads, parallel resonant circuits are preferable, on the other hand, for low impedance loads, series resonant circuits are more preferable. For frequency tracking, a PLL circuit is used as main control element to detect the phase difference of current and voltage of load. The realized apparatus composed of control circuit and voltage type full-bridged MOSFET elements as main parts of inverter. A stable frequency follow-up characteristics are obtained for 1.2MHz, 1.5KW high frequency output and power is always supplied to the load with unity power factor.

  • PDF

The Inverter Control Method Using The Voltage Sag Compensation algorithm (순간전압강하 보상 알고리즘을 이용한 인버터 제어에 관한 연구)

  • Yun, Hong-Min;Bae, Jin-Yong;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.62-67
    • /
    • 2012
  • In this paper general purpose voltage source inverter drives are equipped with an under-voltage protection mechanism, causing the system to shut down within a few milliseconds after a power interruption in the main input sources. When a power interruption occurs finish, if the system is a large inertia restarting the load a long time is required. This paper suggests modifications in the control algorithm in order to improve the sag ride-through performance of ac inverter. The new proposed strategy recommends maintaining the DC-link voltage constant at the nominal value during a sag control algorithm, experimental results are presented.

Novel Control of STATCOM Using Cascade Multilevel Inverter for High Power Application (대전력용 직렬형 멀티레벨 인버터 이용한 STATCOM의 새로운 제어기법)

  • Min, Wan-Ki;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.136-141
    • /
    • 2000
  • This paper proposes the novel control of a static synchronous compensator (STATCOM). This STATCOM system consists of cascade multilevel inverter which employs H-bridge inverter(HBI) The STATCOM system is modeled in the d-q transform matrix. This model is used to design a controller. The selective harmonic elimination method(SHEM) allows to keep the total harmonic distortion (THD) low in the output voltage. The switching method produces the staircase type waveform in cascade multilevel inverter. To balance the DC voltages in HBIs capacitor, the rotated switching scheme is newly proposed in this paper. The proposed control scheme is verified in the simulated results.

  • PDF

Cascaded H-bridge Multilevel Inverter for High Precision and Linear Control of the Rate of Ozone Yielding

  • Park, Sung-Jun;Kang, Feel-Soon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • A multilevel inverter employing a cascade transformer is proposed for a silent-discharge-tube ozone generating system. The proposed inverter consists of four full-bridge inverters and fourteen transformers which have a series-connected secondary. It can accurately control the amplitude of the output voltage; hereby, it improves a linear characteristic of the rate of ozone yielding. The power regulation characteristics and operational principle of the proposed system are explained from a practical point of view. High precision ozone generating performance of the proposed multilevel inverter is verified by computer-aided simulations and experiment results.