Browse > Article
http://dx.doi.org/10.11142/jicems.2013.2.3.321

Cascaded H-bridge Multilevel Inverter for High Precision and Linear Control of the Rate of Ozone Yielding  

Park, Sung-Jun (Dept. of Electrical Engineering, Chonnam National University)
Kang, Feel-Soon (Dept. of Electronics and Control Engineering, Hanbat National University)
Publication Information
Journal of international Conference on Electrical Machines and Systems / v.2, no.3, 2013 , pp. 321-329 More about this Journal
Abstract
A multilevel inverter employing a cascade transformer is proposed for a silent-discharge-tube ozone generating system. The proposed inverter consists of four full-bridge inverters and fourteen transformers which have a series-connected secondary. It can accurately control the amplitude of the output voltage; hereby, it improves a linear characteristic of the rate of ozone yielding. The power regulation characteristics and operational principle of the proposed system are explained from a practical point of view. High precision ozone generating performance of the proposed multilevel inverter is verified by computer-aided simulations and experiment results.
Keywords
Multilevel inverters; Pulse width modulation (PWM); Silent discharge (SD) type ozone generating tube;
Citations & Related Records
연도 인용수 순위
  • Reference
1 U. Kogelschatz and B. Eliasson, Handbook of Electrostatic Processes. New York: Marcel Dekker, 1995, ch. 26.
2 D. Ibrahim, Marc A. Rosen, "Energy, environment and sustainable development," Applied Energy, vol. 64, no. 1, pp. 427-440, 1999.   DOI   ScienceOn
3 I. I. Inculet, "Method and apparatus for ozone generation and treatment of water," Canadian Patent 2 104 355, 1997.
4 T. Muratal et al., "Polarity effect of silent discharge," Ozone SCI. Eng., vol. 17, no. 5, pp. 575-586, 1995.   DOI
5 Design Guidline Manual for Ozone Systems, M. A. Dimitrou. Ed., IOA Pan Ameerican Committee. Norwalk, CT, 1990.
6 K. Urashima, T. Ito, and J. S. Chang, "The Effect of Ammonia on the reduction of NOx in a combustion flue gas by super imposing space and silent discharges," Trans. Ind. Electron. Eng. Japan, vol. 115, no. 9, pp. 916-917, 1995.
7 R. Feng, G. S. P. Castle, and S. Jayaram, "Automated System for Power Measurement in the Silent Discharge," IEEE Trans. Ind. Appl., vol. 34, no. 3, pp. 563-570, 1998.   DOI   ScienceOn
8 J. M. Alonso, J. Garcia, A. J. Calleja, J. Ribas, and J. Cardesin, "Analysis, Design, and Experimentation of a High-Voltage Power Supply for Ozone Generation based on Current-Fed parallel-Resonant Push-Pull Inverter," IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1364-1372, Sept./Oct., 2005.   DOI   ScienceOn
9 J. M. Alonso, J. Garcia, A. J. Calleja, J. Ribas, and J. Cardesin, "Analysis, design and experimentation of a high voltage power supply for ozone generation based on the current-fed parallel-resonant push-pull inverter," in Proc. IEEE IAS'04 Conf., vol. 4, no. 3-7, Oct. 2004, pp. 2687-2693.
10 J. M. Alonso, J. Cardesin, E. L. Corominas, M. Rico-Secades, and J. Garcia, "Low-power high-voltage high-frequency power supply for ozone generation," IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 414-421, March/April 2004.   DOI   ScienceOn
11 J. M. Alonso, A. J. Calleja, J. Ribas, M. Valdes, and J. Losada, "Analysis and design of a low-power high-voltage high-frequency power supply for ozone generation," in Proc. IEEE IAS'01 Conf., vol. 4, Oct. 2001, pp. 2525-2532.
12 S. Wang, M. Nakaoka, and Y. Konishi, "DSP-based PDM and PWM type voltage-fed load-resonant inverter with high-voltage transformer for silent discharge ozonizer," in Proc. IEEE PESC'98, vol. 1, Fukuoka, Japan, 1998, pp. 159-164.
13 S. Wang, Y. Konishi, M. Ishitobi, S. Shirakawa, and M. Nakaoka, "Current-source type parallel-compensated load resonant inverter with PDM control scheme for efficient ozonizer," in Proc. IEEE Int. Power Electronic Conf. (CIEP), Morelia, Mexico, 1998, pp. 103-110.
14 J. M. Alonso, M. Rico-Secades, E. Corominas, J. Cardesin, and J. Garcia, "Low-power high-voltage high-frequency power supply for ozone generation," in Proc. IEEE IAS'02 Conf., vol. 1, Oct. 2002, pp. 257-264.
15 J. M. Alonso, J. Cardesin, J. A. Martin-Ramos, J. Garcia, and M. Rico-Secades, "Using current-fed parallel-resonant inverters for electrodischarge applications: a case of study," in Proc. IEEE APEC'04 Conf., vol. 1, 2004, pp. 109-115.
16 C. Boonseng, V. Kinnares, and P. Apriratikul, "Harmonic analysis of corona discharge ozone generator using brush electrode configuration," in Proc. IEEE PES'00 Conf., vol. 1, Jan. 2000, pp. 403-408.
17 J. M. Alonso, C. Ordiz, M. A. D. Costa, J. Ribas, and J. Cardesin, "High Voltage Power Supply for Ozone Generation Based on Piezoelectric Transformer," in Proc. IEEE IAS'07 Conf., Sept. 2007, pp. 1901-1908.
18 J. A. Dorsey, and J. H. Davidson, "Ozone production in electrostatic air cleaners with contaminated electrodes," IEEE Trans. Ind. Appl., vol. 30, no. 2, pp. 370-376, March/April 1994.   DOI   ScienceOn
19 S. Masuda, K. Akutsu, M. Kuroda, Y. Awatsu, and Y. Shibuya, "A ceramic-based ozonizer using high-frequency discharge" IEEE Trans. Ind. Appl., vol. 24, no. 2, pp. 223-231, March/April 1998.
20 J. D. Moon, and S. T. Geum, "Discharge and ozone generation characteristics of a ferroelectric-ball/mica-sheet barrier," IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1206-1211, Nov./Dec. 1998.   DOI   ScienceOn
21 Y. Zhongming, P. K. Jain, and P. C. Sen, "A Full-Bridge Resonant Inverter With Modified Phase-Shift Modulation for High-Frequency AC Power Distribution Systems," IEEE Tran. Ind. Electron., vol. 54, no. 5, pp. 2831-2845, Oct. 2007.   DOI   ScienceOn
22 F. S. Kang, S. E. Cho, S. J. Park, C. U. Kim, and T. Ise, "Multilevel PWM Inverters suitable for the use of Stand-alone Photovoltaic Power Systems," IEEE Trans. Energy Conver., vol. 20, no. 4, pp. 906-915, Dec. 2005.   DOI   ScienceOn
23 J. A. Robinson, M. A. Bergougnou, W. L. Cairns, G. S. P. Castle, and I. I. Inculet, "A New Type of Ozone Generator Using Taylor Cones on Water Surfaces," IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1218-1224, Nov./Dec. 1998.   DOI   ScienceOn