• Title/Summary/Keyword: intracellular oxidative stress

Search Result 390, Processing Time 0.05 seconds

Neuroprotective effects of astringency-removed peel extracts of Diospyros kaki Thunb. cv. Cheongdo-Bansi on oxidatively-stressed PC-12 cells (청도반시(Diospyros kaki Thunb. cv. Cheongdo-Bansi) 탈삽 껍질 추출물의 산화스트레스로부터 PC-12 신경세포 보호 효과)

  • Jeong, Da-Wool;Cho, Chi Heung;Rha, Chan Su;Lee, Seung Hwan;Kim, Dae-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.538-543
    • /
    • 2017
  • Astringent persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) peel with the astringency removed, which is a by-product of dried persimmon (gotgam), was investigated for its antioxidant and neuroprotective properties. A mixture of peel and 40% (v/v) aqueous ethanol was subjected to ultrasonication and then thermal and nonthermal treatments, to produce thermally-treated and nonthermally-treated persimmon peel extracts (TPE and NTPE, respectively). The total phenolic and flavonoid contents and the antioxidant capacity of TPE was approximately 1.3-1.8 times higher than those of NTPE. TPE resulted in the increased viability of neuronal PC-12 cells compared with NTPE. Furthermore, intracellular oxidative stress in PC-12 cells was more decreased by treatment with TPE than NTPE. Cholinesterases, such as acetylcholinesterase and butyrylcholinesterase, were more inhibited by treatment with TPE than NTPE. These results suggest that TPE is useful as a functional material to decrease oxidative stress in neuronal cells and to inhibit cholinesterases.

A unique thioredoxin reductase plays defensive roles against oxidative, nitrosative and nutritional stresses in Schizosaccharomyces pombe (Schizosaccharomyces pombe의 유일한 치오레독신 환원효소의 산화적, 일산화질소 및 영양 스트레스에 대한 방어적 역할)

  • Ji, Dam-Jung;Lim, Chang-Jin;Kim, Kyunghoon
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • A unique Schizosaccharomyces pombe $TrxR^+$ gene encoding thioredoxin reductase (TrxR) was found to be positively regulated by stress-inducing agents through the stress-responsive transcription factor Pap1. In the present study, the protective roles of S. pombe TrxR were evaluated using the TrxR-overexpressing recombinant plasmid pHSM10. In the presence of hydrogen peroxide ($H_2O_2$) and superoxide anion-generating menadione (MD), S. pombe TrxR increased cellular growth and the total glutathione (GSH) level, while it reduced levels of intracellular reactive oxygen species (ROS). The nitric oxide (NO) levels of the TrxR-overexpressing cells, in the presence of $H_2O_2$ and MD, were maintained to be similar to those of the corresponding non-treated cells. Although S. pombe TrxR was able to scavenge NO generated by sodium nitroprusside (SNP), it had no significant modulating effects on cellular growth, ROS levels, or the total GSH level of SNP-exposed yeast cells, compared with the differences in those of the two non-treated cell cultures. TrxR increased the cellular growth and total GSH level, which were diminished by nitrogen starvation. It also scavenged ROS and NO produced during nitrogen starvation. Taken together, the S. pombe TrxR protects against oxidative, nitrosative, and nutritional stresses.

Antioxidant Properties and Protective Effects of Inula britannica var. chinensis Regel on Oxidative Stress-induced Neuronal Cell Damage (금불초 추출물의 항산화 효과 및 산화 스트레스에 대한 신경세포 보호작용)

  • Lee, Na-Hyun;Hong, Jung-Il;Kim, Jin-Yung;Chiang, Mae-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.87-92
    • /
    • 2009
  • The antioxidant properties and protective effects of Inula britannica on ${H_2}{O_2}$-induced SH-SY5Y neuroblastoma cell damage were investigated. A series of solvent fractions, including hexane(Fr.H), petroleum ether, chloroform, ethyl acetate(Fr.EA), and water fraction(Fr.W), were prepared from the 70% methanol extracts of Inula britannica. Fr.W had the highest total contents of phenolics and flavonoids, followed by Fr.EA. The antioxidant properties of the fractions were also evaluated by analyzing their scavenging activities on 1,1-diphenyl-2-picrylhydrazyl(DPPH) radicals, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, and nitric oxide. Fr.W showed the strongest activities in all assays. The concentrations of Fr.W that resulted in 50% reductions of the DPPH and ABTS radicals were 20.7 ${\mu}g$/mL and 39.4 ${\mu}g$/mL, respectively. Fr.W showed the weakest cytotoxic activities on the SH-SY5Y cells, whereas it effectively protected ${H_2}{O_2}$-induced cell death, increasing cell survival by 35.0-77.0% at a concentration range of 62.5-250 ${\mu}g$/mL. In this range, Fr.W also significantly decreased intracellular ROS levels by 34-39%. Overall, the antioxidant properties of Inula britannica can contribute to rescuring neuronal cells from oxidative stress-induced cell injury.

PC12 Cell Protective Effects of Broccoli (Brassica oleracea var. italica) Leaf Fraction against H2O2-induced Oxidative Stress (H2O2로 유발된 산화적 스트레스에 대한 브로콜리(Brassica oleracea var. italica) 잎 분획물의 PC12 cell 보호 효과)

  • Park, Seon Kyeong;Jin, Dong Eun;Park, Chang Hyeon;Seung, Tae Wan;Choi, Sung-Gil;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.483-488
    • /
    • 2014
  • To examine the physiological effects of broccoli (Brassica oleracea var. italica) leaf, the bioavailable compounds in broccoli leaf extract, and its in vitro neuroprotective effects against $H_2O_2$-induced oxidative stress were examined in this study. The chloroform fraction of broccoli leaf extract had the highest total phenolic content of all the fraction than others, and the highest 2,2"-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical-scavenging activity and malondialdehyde (MDA) inhibitory effect. Intracellular reactive oxygen species (ROS) accumulation resulting in $H_2O_2$-treated in PC12 cells was significantly lower when the chloroform fraction was present in the medium compared to that in PC12 cells treated with $H_2O_2$ alone. In a cell viability assay performed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), the chloroform fraction showed protective effects against $H_2O_2$-induced neurotoxicity and inhibited lactate dehydrogenase (LDH) release into the medium. High-performance liquid chromatography (HPLC) analysis showed that ferulic acid was the predominant phenolic compound in chloroform fraction of broccoli leaf.

Antioxidant and Acetylcholinesterase Inhibitory Effect of Aged Raw Garlic Extracts (생마늘 추출 숙성물의 항산화 및 아세틸콜린에스터라아제 저해 효과)

  • Jeong, Hee-Rok;Jeong, Ji-Hee;Jo, Yu-Na;Shin, Jung-Hye;Kang, Min-Jung;Sung, Nak-Ju;Heo, Ho-Jin
    • Journal of agriculture & life science
    • /
    • v.45 no.4
    • /
    • pp.113-120
    • /
    • 2011
  • In vitro antioxidant activities and acetylcholinesterase (AChE) inhibitory effects of solvent fractions from aged raw garlic extracts were investigated. Total phenolics fractioned by hexane, chloroform, ethyl acetate and water from Aged raw garlic extracts were 3.70, 23.63, 31.27 and 2.35 mg/g, respectively. We found that ethyl acetate fractions had the highest in ABTS radical scavenging activities, ferric reducing antioxidant power and inhibitory effect on auto-oxidation of linoleic acid. Intracellular ROS accumulation resulting from $H_2O_2$ treatment of PC12 cells was significantly reduced when ethyl acetate fractions were present in the medium compared to PC12 cells treated with $H_2O_2$ only. In addition, we found that ethyl acetate fractions from aged raw garlic extracts resulted in a dose-dependent manner on AChE inhibition. Consequently, our results suggest that ethyl acetate fractions from aged raw garlic extracts may be useful as decreasing agents of oxidative stress and AChE inhibitors.

Protective Role of Transduced Tat-Thioredoxin1 (Trx1) against Oxidative Stress-Induced Neuronal Cell Death via ASK1-MAPK Signal Pathway

  • Yeo, Eun Ji;Eum, Won Sik;Yeo, Hyeon Ji;Choi, Yeon Joo;Sohn, Eun Jeong;Kwon, Hyun Jung;Kim, Dae Won;Kim, Duk-Soo;Cho, Sung-Woo;Park, Jinseu;Han, Kyu Hyung;Lee, Keun Wook;Park, Jong Kook;Shin, Min Jea;Choi, Soo Young
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.321-330
    • /
    • 2021
  • Oxidative stress plays a crucial role in the development of neuronal disorders including brain ischemic injury. Thioredoxin 1 (Trx1), a 12 kDa oxidoreductase, has anti-oxidant and anti-apoptotic functions in various cells. It has been highly implicated in brain ischemic injury. However, the protective mechanism of Trx1 against hippocampal neuronal cell death is not identified yet. Using a cell permeable Tat-Trx1 protein, protective mechanism of Trx1 against hydrogen peroxide-induced cell death was examined using HT-22 cells and an ischemic animal model. Transduced Tat-Trx1 markedly inhibited intracellular ROS levels, DNA fragmentation, and cell death in H2O2-treatment HT-22 cells. Tat-Trx1 also significantly inhibited phosphorylation of ASK1 and MAPKs in signaling pathways of HT-22 cells. In addition, Tat-Trx1 regulated expression levels of Akt, NF-κB, and apoptosis related proteins. In an ischemia animal model, Tat-Trx1 markedly protected hippocampal neuronal cell death and reduced astrocytes and microglia activation. These findings indicate that transduced Tat-Trx1 might be a potential therapeutic agent for treating ischemic injury.

Anti-inflammatory effects of ethyl acetate fraction of unripe astringent persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) on lipopolysaccharide-stimulated RAW 264.7 cells (지방질다당류로 자극한 RAW 264.7 세포에서 청도반시 땡감 에틸 아세테이트 분획물의 항염증 효과)

  • Park, Ye Bin;Jeong, Ha-Ram;Lee, Seung Hwan;Kim, Taewan;Kim, Dae-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.90-96
    • /
    • 2019
  • Unripe astringent persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) is a by-product produced when thinning out the superfluous fruit of persimmon. We investigated whether unripe astringent persimmon has antioxidative and anti-inflammatory effects. Unripe astringent persimmon extract was fractionated sequentially in n-hexane, chloroform, ethyl acetate, n-butanol, and water. The ethyl acetate fraction had the highest total phenolic content, total flavonoid content, and antioxidant capacity compared to those of the other fractions. Pretreatment of lipopolysaccharide-stimulated RAW 264.7 macrophages with the ethyl acetate fraction reduced nitric oxide, interleukin-6, and intracellular oxidative stress in a dose-dependent manner. Ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis revealed gallic acid, protocatechuic acid, 4-hydroxybenzoic acid, quercetin-3-O-glucoside, quercetin, and p-coumaric acid as the phenolic compounds of the ethyl acetate fraction. Collectively, these findings suggest that unripe astringent persimmon is a source of functional materials that can promote antioxidative and anti-inflammatory effects.

Fortified Antioxidative Potential by Chrysoeriol through the Regulation of the Nrf2/MAPK-mediated HO-1 Signaling Pathway in RAW 264.7 Cells (생쥐 대식세포에서 HO-1 발현 유도를 통한 chrysoeriol의 항산화 효과)

  • Park, Chung Mu
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • Chrysoeriol is a widespread flavone, and it is usually found in alfalfa, which has been used as a traditional medicine to treat dyspepsia, asthma, and urinary system disorders. Recently, analysis has been conducted on the anti-inflammatory activity of chrysoeriol, but information on its antioxidative capacity is limited. In this study, the antioxidative potential of chrysoeriol against oxidative damage and its molecular mechanisms were evaluated by analysis of the cell viability, reactive oxygen species (ROS) formation, and Western blots in the RAW 264.7 cell line. Chrysoeriol significantly scavenged lipopolysaccharide (LPS)-induced intracellular ROS formation in a dose-dependent manner, without any cytotoxicity. Heme oxygenase-1 (HO-1), a phase II enzyme that exerts antioxidative activity, was also potently induced by chrysoeriol treatment, which corresponded to the translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) into the nucleus. Moreover, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) were analyzed due to their important role in maintaining cellular redox homeostasis against oxidative stress. As a result, chrysoeriol-induced HO-1 upregulation was mediated by extracellular signal - regulated kinase (ERK), c-Jun $NH_2$-terminal kinase (JNK), and p38 phosphorylation. To identify the antioxidative potential exerted by HO-1, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was applied and mitigated by chrysoeriol treatment, which was confirmed by the HO-1 selective inhibitor and inducer, respectively. Consequently, chrysoeriol strongly strengthened the HO-1-mediated antioxidative potential through the regulation of the Nrf2/MAPK signaling pathways.

Anti-oxidative Effect of Chungsimyeonja-um (CSYJE) via Nrf2/HO-1 Pathway Activity in Lipopolysaccharide (LPS) Induced RAW 264.7 Macrophages (대식세포에서 Nrf2/HO-1경로를 통한 청심연자음의 항산화효과)

  • Jeon, Seon Hong;Oh, Sol La;Kim, So Jeong;Jeon, Bo Hee;Sung, Jin Young;Kim, Yong Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.3
    • /
    • pp.253-263
    • /
    • 2020
  • Reactive oxygen species (ROS) plays an important role in maintaining homeostasis. However, excessive ROS production damages cellular components such as proteins, lipids, and nucleic acids and promotes skin aging. In this study, we confirmed the antioxidant effect of CSYJE to prevent excessive oxidative stress. First, DPPH and ABTS assays were performed to confirm the antioxidant effect of CSYJE and the radical scavenging activity was confirmed depending on the concentration. As a result of performing the MTT assay to confirm the cell viability, it was confirmed that there was no cytotoxicity at a concentration of 1,000 ㎍/mL. As a result of western blotting to confirm the expression levels of the antioxidant-related proteins nuclear-E2-related factor 2 (Nrf2) and Heme oxygenase-1 (HO-1), it was confirmed that the expression was increased in a concentration-dependent manner. After inducing ROS with lipopolysaccharide (LPS), an intracellular ROS-causing substance, DCF-DA was performed to confirm the inhibitory effect of ROS production, and the inhibition of ROS production was confirmed to concentration-dependent. Real-time RT-PCR was performed to confirm the mRNA expression level of inflammatory cytokines and inflammatory mediator caused by ROS generation, mRNA expression was reduced in a dose dependent manner. Therefore, this study confirmed the antioxidant effect of CSYJE through the Nrf2/HO-1 signaling pathway, which suggests that CSYJE can be used as an antioxidant cosmetic material by inhibiting free radicals.

Antioxidative activities of Artemisia capillaris-Fermented Hericium erinaceum Mycelium (인진쑥 노루궁뎅이 버섯균사체 발효물의 항산화 활성)

  • Kim, Seung-Sub;Kyeong, Inn-Goo;Lee, Mi-La;Kim, Dong-Goo;Shin, Ji-Young;Yang, Jin-Yi;Lee, Gwang-Ho;Eum, Won-Sik;Kang, Jung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.719-730
    • /
    • 2014
  • The hot water extract from Artemisia capillaris fermented with Hericium erinaceum mycelium (AC-HE) were assessed for the protection against oxidative modification of biological macromolecules and cell death. Antioxidant activity of AC-HE evaluated using 2,2-diphenyl-1-picrylhydrazyl radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical and peroxyl radical scavenging assays. AC-HE showed 61.73% DPPH radical scavenging activity at $500{\mu}g/mL$, 97.39% ABTS radical scavenging activity at $250{\mu}g/mL$, and 44.18% peroxyl radical scavenging activity at $100{\mu}g/mL$. AC-HE were shown to significantly inhibited DNA strand breakage induced by peroxyl radical. AC-HE also prevented peroxyl radical-mediated human serum albumin modification. AC-HE effectively inhibited $H_2O_2$ induced cell death and significantly increased of the 11.47% cell survival at $100{\mu}g/mL$. AC-HE also decreased intracellular reactive oxygen species (ROS) levels in $H_2O_2$-treated cells. The results suggested that AC-HE can contribute to antioxidant and protected cells from oxidative stress-induced cell injury.