Browse > Article
http://dx.doi.org/10.9721/KJFST.2019.51.1.90

Anti-inflammatory effects of ethyl acetate fraction of unripe astringent persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) on lipopolysaccharide-stimulated RAW 264.7 cells  

Park, Ye Bin (Department of Food Science and Biotechnology, Kyung Hee University)
Jeong, Ha-Ram (Department of Food Science and Biotechnology, Kyung Hee University)
Lee, Seung Hwan (Department of Food Science and Biotechnology, Andong National University)
Kim, Taewan (Department of Food Science and Biotechnology, Andong National University)
Kim, Dae-Ok (Department of Food Science and Biotechnology, Kyung Hee University)
Publication Information
Korean Journal of Food Science and Technology / v.51, no.1, 2019 , pp. 90-96 More about this Journal
Abstract
Unripe astringent persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) is a by-product produced when thinning out the superfluous fruit of persimmon. We investigated whether unripe astringent persimmon has antioxidative and anti-inflammatory effects. Unripe astringent persimmon extract was fractionated sequentially in n-hexane, chloroform, ethyl acetate, n-butanol, and water. The ethyl acetate fraction had the highest total phenolic content, total flavonoid content, and antioxidant capacity compared to those of the other fractions. Pretreatment of lipopolysaccharide-stimulated RAW 264.7 macrophages with the ethyl acetate fraction reduced nitric oxide, interleukin-6, and intracellular oxidative stress in a dose-dependent manner. Ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis revealed gallic acid, protocatechuic acid, 4-hydroxybenzoic acid, quercetin-3-O-glucoside, quercetin, and p-coumaric acid as the phenolic compounds of the ethyl acetate fraction. Collectively, these findings suggest that unripe astringent persimmon is a source of functional materials that can promote antioxidative and anti-inflammatory effects.
Keywords
antioxidant capacity; by-product; cytokine; oxidative stress; phenolic compound;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Azad N, Rojanasakul Y, Vallyathan V. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J. Toxicol. Environ. Health Part B 11: 1-15 (2008)   DOI
2 Bennett RN, Wallsgrove RM. Secondary metabolites in plant defence mechanisms. New Phytol. 127: 617-633 (1994)   DOI
3 Biswas SK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid. Med. Cell. Longev. 2016: 5698931 (2016)   DOI
4 Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28: 25-30 (1995)   DOI
5 Butt MS, Sultan MT, Aziz M, Naz A, Ahmed W, Kumar N, Imran M. Persimmon (Diospyros kaki) fruit: hidden phytochemicals and health claims. EXCLI J. 14: 542-561 (2015)
6 Chen XN, Fan JF, Yue X, Wu XR, Li LT. Radical scavenging activity and phenolic compounds in persimmon (Diospyros kaki L. cv. Mopan). J. Food Sci. 73: C24-C28 (2008)   DOI
7 Coleman JW. Nitric oxide in immunity and inflammation. Int. Immunopharmacol. 1: 1397-1406 (2001)   DOI
8 Comalada M, Ballester I, Bailon E, Sierra S, Xaus J, Galvez J, Sanchez de Medina F, Zarzuelo A. Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: analysis of the structure-activity relationship. Biochem. Pharmacol. 72: 1010-1021 (2006)   DOI
9 Heo H-J, Cho H-Y, Hong B, Kim H-K, Kim E-K, Kim B-G, Shin DH. Protective effect of 4',5-dihydroxy-3',6,7-trimethoxyflavone from Artemisia asiatica against A${\beta}$-induced oxidative stress in PC12 cells. Amyloid-J. Protein Fold. Disord. 8: 194-201 (2001)   DOI
10 Comalada M, Camuesco D, Sierra S, Ballester I, Xaus J, Galvez J, Zarzuelo A. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through downregulation of the NF-${\kappa}$B pathway. Eur. J. Immunol. 35: 584-592 (2005)   DOI
11 Hossain A, Moon HK, Kim J-K. Antioxidant properties of Korean major persimmon (Diospyros kaki) leaves. Food Sci. Biotechnol. 27: 177-184 (2018)   DOI
12 Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat. Rev. Cancer 3: 276-285 (2003)   DOI
13 Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N. Oxidative stress and inflammation: what polyphenols can do for us? Oxid. Med. Cell. Longev. 2016: 7432797 (2016)
14 Kim D-O, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81: 321-326 (2003)   DOI
15 Janssens S, Beyaert R. Role of Toll-like receptors in pathogen recognition. Clin. Microbiol. Rev. 16: 637-646 (2003)   DOI
16 Jeon IH, Kang HJ, Lee H-S, Shin JH, Park YG, Jeong S-I, Jang SI. Antioxidant and anti-inflammatory activities of water-soluble extracts from different parts of Kojongsi persimmon (Diospyros kaki L.). Korean J. Food Sci. Technol. 46: 505-510 (2014)   DOI
17 Jeong D-W, Cho CH, Lee JS, Lee SH, Kim T, Kim D-O. Deastringent peel extracts of persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) protect neuronal PC-12 and SH-SY5Y cells against oxidative stress. J. Microbiol. Biotechnol. 28: 1094-1104 (2018)   DOI
18 Lee MS, Lee II, Kim Y, Kim YJ, Heo HJ, Kim D-O. Inhibitory effect of the ethyl acetate fraction from astringent persimmon on $H_2O_2$-induced oxidative stress in HepG2 cells. Food Sci. Biotechnol. 23: 1247-1252 (2014)   DOI
19 Kim EO, Lee H, Cho CH, Kim YJ, Kim D-O. Antioxidant capacity and anti-inflammatory effect of the ethyl acetate fraction of dried persimmon (Diospyros kaki Thumb.) on THP-1 human acute monocytic leukemia cell line. J. Korean Soc. Appl. Biol. Chem. 54: 606-611 (2011a)
20 Kim H-J, Park T-S, Jung M-S, Son J-H. Study on the anti-oxidant and anti-inflammatory activities of sarcocarp and calyx of persimmon (Cheongdo Bansi). J. Appl. Biol. Chem. 54: 71-78 (2011b)   DOI
21 Mallavadhani UV, Panda AK, Rao YR. Pharmacology and chemotaxonomy of diospyros. Phytochemistry 49: 901-951 (1998)   DOI
22 Shin D-J, Kim K-H, Son G-M, Lee S-C, Hwang Y-I. Changes of physicochemical properties during preparation of prepersimmon pickles. J. Korean Soc. Food Sci. Nutr. 29: 420-424 (2000)
23 Park W. Inhibitory effect of gallic acid on production of interleukins in mouse macrophage stimulated by lipopolysaccharide. J. Pharmacopuncture 13: 63-71 (2010)
24 Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AMK. Mechanisms of cell death in oxidative stress. Antioxid. Redox Signal. 9: 49-89 (2007)   DOI
25 Schieber A, Stintzing FC, Carle R. By-products of plant food processing as a source of functional compounds-recent developments. Trends Food Sci. Technol. 12: 401-413 (2001)   DOI
26 Singleton VL, Rossi JA, Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16: 144-158 (1965)
27 Kim D-O, Lee KW, Lee HJ, Lee CY. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem. 50: 3713-3717 (2002)   DOI
28 Winter AN, Brenner MC, Punessen N, Snodgrass M, Byars C, Arora Y, Linseman DA. Comparison of the neuroprotective and antiinflammatory effects of the anthocyanin metabolites, protocatechuic acid and 4-hydroxybenzoic acid. Oxid. Med. Cell. Longev. 2017: 6297080 (2017)
29 Suzuki T, Someya S, Hu F, Tanokura M. Comparative study of catechin compositions in five Japanese persimmons (Diospyros kaki). Food Chem. 93: 149-152 (2005)   DOI
30 Torres JL, Varela B, Garcia MT, Carilla J, Matito C, Centelles JJ, Cascante M, Sort X, Bobet R. Valorization of grape (Vitis vinifera) byproducts. Antioxidant and biological properties of polyphenolic fractions differing in procyanidin composition and flavonol content. J. Agric. Food Chem. 50: 7548-7555 (2002)   DOI