Browse > Article
http://dx.doi.org/10.12925/jkocs.2014.31.4.719

Antioxidative activities of Artemisia capillaris-Fermented Hericium erinaceum Mycelium  

Kim, Seung-Sub (Dept. of Biomedical Science, Cheongju University)
Kyeong, Inn-Goo (R & D Center, Cosis Bio Corporation Limited)
Lee, Mi-La (R & D Center, Cosis Bio Corporation Limited)
Kim, Dong-Goo (R & D Center, Cosis Bio Corporation Limited)
Shin, Ji-Young (R & D Center, Cosis Bio Corporation Limited)
Yang, Jin-Yi (Dept. of Biomedical Science, Cheongju University)
Lee, Gwang-Ho (Dept. of Biomedical Science, Cheongju University)
Eum, Won-Sik (Dept. of Biomedical Science, Hallym University)
Kang, Jung-Hoon (Dept. of Biomedical Science, Cheongju University)
Publication Information
Journal of the Korean Applied Science and Technology / v.31, no.4, 2014 , pp. 719-730 More about this Journal
Abstract
The hot water extract from Artemisia capillaris fermented with Hericium erinaceum mycelium (AC-HE) were assessed for the protection against oxidative modification of biological macromolecules and cell death. Antioxidant activity of AC-HE evaluated using 2,2-diphenyl-1-picrylhydrazyl radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical and peroxyl radical scavenging assays. AC-HE showed 61.73% DPPH radical scavenging activity at $500{\mu}g/mL$, 97.39% ABTS radical scavenging activity at $250{\mu}g/mL$, and 44.18% peroxyl radical scavenging activity at $100{\mu}g/mL$. AC-HE were shown to significantly inhibited DNA strand breakage induced by peroxyl radical. AC-HE also prevented peroxyl radical-mediated human serum albumin modification. AC-HE effectively inhibited $H_2O_2$ induced cell death and significantly increased of the 11.47% cell survival at $100{\mu}g/mL$. AC-HE also decreased intracellular reactive oxygen species (ROS) levels in $H_2O_2$-treated cells. The results suggested that AC-HE can contribute to antioxidant and protected cells from oxidative stress-induced cell injury.
Keywords
oxidative modification; biological macromolecules; antioxidant activity; reactive oxygen species;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Halliwell, C. E. Cross, Oxygen-derived species: their relation to human disease and environmental stress, Environ Health Perspect, 10, 5(1994).
2 Y. J. Oh, H. R. Seo, Y. M. Choi, D. S. Jung, Evaluation of antioxidant activity of the extracts from the aerial parts of Cnidium officinale Makino, Korean J of Medicinal Crop Science, 18(6), 373(2010).
3 K. Hermann, Occurrence and content of hydroxycinnamic and hydroxylbenzoic acid compounds in foods, Crit. Rev. Food Sci. Nutr., 28(4), 315(1989).   DOI   ScienceOn
4 S. Yusof, H. M. Ghazali, and G. S. King, Naringin content in local citrus fruits, Food Chemistry, 37(2), 113(1990).   DOI   ScienceOn
5 M. J. Jung, Y. Yin, S. I. Heo, M. H. Wang, Antioxidant and anticancer activities of extract from Artemisia capillaries, Korean J Pharmacogn, 39(3), 194(2008).
6 S. I. Heo, H. J. Jung, M. K. Kim, M. H, Wang, Antioxidative activities and tyrosinase inhibitory effects of Korean medicianl plants, J Appl Biol Chem, 50(3), 115(2007).
7 Y. M. Lee, J. H. Bae, H. Y. Jung, J. H. Kim, D. S. Park, Antioxidant activity in water and methanol extracts from Korean edible wild plants, J Korean Soc. Food Sci. Nutr., 40(1), 29(2011).   DOI
8 R. L. Prior, X. Wu, K. Schaich, Standardized method for the determination of antioxidant capacity and phenolics in foods and dietary supplement, J Agric Food Chem., 53(10), 4290(2005).   DOI   ScienceOn
9 Y. M. Choi, K. W. Yu, N. S. Han, J. H. Koh, J. S. Lee, Antioxidant activities and antioxidant compounds of commercial red wines, J Korean Soc. Food Sci. Nutr., 35(9), 1286(2006).   DOI
10 E. Niki, A. Kawakami, M. Saito, Y. Yamamoto, J. Tsuchiya, Y. Kamiya, Effect of phytyl side chain of vitamin E on its antioxidant activity, J Biol. chem., 260(4), 2191(1985).
11 T. A. Dix, J. Aikens, Mechanisms and biological relevance of lipid peroxidation initaiation, Chem Res Toxicol, 6(1), 2(1993).   DOI   ScienceOn
12 T. Sawa, T. Akaike, K. Kida, Y. Fukushima, K. Takagi, H. Maeda, Lipid peroxyl radicals from oxidized oils and heme-iron: implication of a high-fat diet in colon carcinogenesis, Cancer Epidemoil Biomrkers Prev., 7(11), 1007(1998).
13 E. Niki, Antioxidants in relation to lipid peroxidation, Chem Phys Lipids, 44(2-4), 227(1987).   DOI   ScienceOn
14 K. Hiramoto, H. Hohkoh, K. Sako, K. Kikugawa, DNA breaking activity of the carbon-centered radical generated from 2, 2'-azobis (2-amidinopropane) hydrochloride(AAPH), Free Radic Res Commun, 19(5), 323(1993).   DOI
15 B. N. Ames, Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases, Science, 221(4617), 1256(1983).   DOI   ScienceOn
16 P. A. Cerutti, Prooxidant states and tumor promotion, Science, 227(4685), 375(1985).   DOI
17 J. L. Sagripanti, K. H. Kraemer, Sitespecific oxidative DNA damage at polyguanosines produced by copper plus hydrogen peroxide, J Biol Chem., 264(3), 1729(1989).
18 T. Finkel, N. J. Holbrook, Oxidants, oxidative stress and the biology of ageing, Nature, 408(6809), 239(2000).   DOI   ScienceOn
19 S. Kawanishi, Y. Hiraku, S. Oikawa, Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging, Mutat Res., 488(1), 65(2001).   DOI   ScienceOn
20 E. R. Stadtman, B. S. Berlett, Fenton chemistry. Amino acid oxidation, J Biol Chem., 266(26), 17201(1991).
21 K. J. Davies, M. E. Delsignore, Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure, J Biol Chem., 262(20), 9908(1987).
22 R. L. Levine, C. N. Oliver, R. M. Fulks, E. R. Stadtman, Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis, Proc Natl Acad Sci U S A., 78(4), 2120(1981).   DOI   ScienceOn
23 M. Hashimoto, A. Takeda, L. J. Hsu, T. Takenouchi, E. Masliah, Role of cytochrome c as a stimulator of alpha-synuclein aggregation in Lewy body disease, J Biol Chem., 274(41), 28849 (1999).   DOI
24 A. J. Rivett, R. L. Levine, Metal-catalyzed oxidation of Escherichia coli glutamine synthetase: correlation of structural and functional changes, Arch Biochem Biophys, 278(1), 26(1990).   DOI
25 S. Y. Choi, H. Y. Kwon, O. B. Kwon, J. H. Kang, Hydrogen peroxide-mediated Cu,Zn-superoxide dismutase fragmentation: protection by carnosine, homocarnosine and anserine, Biochim Biophys Acta., 1472(3), 651(1999).   DOI   ScienceOn
26 H. Y. Kwon, S. Y. Choi, M. H. Won, T. Kang, J. H. Kang, Oxidative modification and inactivation of Cu,Zn-superoxide dismutase by 2,2'-azobis(2-amidinopropane) dihydrochloride, Biochim Biophys Acta, 1543(1), 69(2000).   DOI
27 M. J. Carden, J. Q. Trojanowski, W. W. Schlaepfer, and V. M. Lee, Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns, J Neurosci, 7(11), 3489(1987).
28 R. Perrot, J. Eyer, Neuronal intermediate filaments and neurodegenerative disorders, Brain Res Bull., 80(4-5), 282(2009).   DOI
29 I. G. Kyeong, W. S. Eum, S. Y. Choi, J. H. Kang, Oxidative modification of neurofilament-L and neuronal cell death induced by the catechol neurotoxin, tetrahydropapaveroline, Toxicol Lett, 217 (1), 59(2013).   DOI
30 D. Rosen, T. Siddique, D. Patterson, D. Figlewiez, P. Sapp, A. Hentati, D. Donaldson, et al., Mutation in Cu,Zn-superoxide dismutase gene are associated wigh familial amyotrophic lateral sclerosis, Nature, 362(6415), 59(1993).   DOI   ScienceOn
31 B. Halliwell, and J. M. Gutteridge, The importance of free radicals and catalytic metal irons in human disease, Mol Aspects Med., 8(2), 89(1985).   DOI   ScienceOn
32 Z. Radak, S. Kumagai, A. W. Taylor, H. Naito, S. Goto, Effects of exercise on brain function: role of free radical, Appl Physiol Nutr Metab., 32(5), 942(2007).   DOI   ScienceOn
33 J. M. McCord, The superoxide free radical: Its biochemistry and pathophysiology, Surgry, 94(3), 412(1983).
34 G. B. Bulkey, The role of oxygen free radicals in human disease processes, Surgery, 94(3), 407(1993).
35 R. Groswami, and G. Dawson, Does ceramide play a role in neural cell apoptosis? J Neurosci Res., 60(2), 141 (2000).   DOI   ScienceOn
36 C. F. Chen, S. Y. Lang, P. P. Zuo, N. Yang, X. Q. Wang, C. Xia, Effects of D-galactose on the expression of hippocampal peripheral-type benzodiazepine receptor and spatial memory performances in rats, Psychoneuroendocrinology, 31(7), 805(2006).   DOI   ScienceOn
37 X. Cui, P. Zuo, Q. Zhang, X. Li, Y. Hu, J. Long, et al., Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid, J Neurosci Res., 83(8), 1584(2006).   DOI   ScienceOn
38 W. S. Sun, H. Q. Yu, H. Zhang, Y. L. Zheng, J. J. Wang, L. Luo, Quercetin attenuates spontaneous behavior and spatial memory impairment in D-galactose-treated mice by increasing brain antioxidant capacity, Nutrition Research, 27(3), 169(2007).   DOI   ScienceOn
39 D. H. Halliwell, and T. E. Barry, Reactive oxygen species in living system, Am. J. Medicine, 91(3C), 14(1991).
40 C. S. Moody, and H. M. Hassan, Mutagenecity of oxygen free radicals, Proc. Natl. Acad. Sci, 79(9), 2855(1982).   DOI   ScienceOn
41 D. Harman, A theory based on free radical and radiation chemistry, J. Gerontol, 11(3), 298(1956).   DOI   ScienceOn
42 R. P. Hertzberg, and P. B. Drevan, Cleavage of DNA with EDTA-iron(II): reaction condition and product analysis, Biochemistry, 23(17), 3934(1984).   DOI   ScienceOn
43 M. Nose, and N. Fijino, Antioxidative activities of some vegetable foods and active component of avocado epicarp, Nippon Shokuhin Kogyo Gakkaishi, 29(2) 507 (1982).   DOI
44 H. J. Lee, E. H. Hwang, H. H. Yu, I. S. Song, C. M. Kim, M. C. Kim, J. H. Hong, D. S. Kim, S. B. Han, K. J. Kang, E. J. Lee, H. W. Chung, The analysis of nutrients in Artemisia capillaris Thunberg, J Korean Soc food sci Nutr, 31(3), 361 (2002).   DOI
45 H. T. Kim, J. W. Kim, M. K. Lim, S. G. Yeo, K. H. Jang, T. H. Oh, K. W. Lee, Antimicrobial effects of Artemisia capillaris extracts on the pathogenic bacteria in vitro, J Vet Clin., 24(2), 130(2007).
46 S. D. Lee, H. H. Park, D. W. Kim, B. H. Bang, Bioactivie consituents and utilities of Artemisia sp. as medicinal herb and foodstuff. Korean J. Food & Nutr., 13(5), 490(2000).
47 X. J. Wang, H. Sun, Z. S. Liu, Quantitative analysis of 6,7-dimethylesculetin and capillarisine in Artemisia capillaries Thunb. and prescriptions containing the crude drug. Zhongguo Zhong Yao Za Zhi., 19(11), 667(1994).
48 Y. Kabir, S. Kimura, Dietary mushroom reduce blood pressure in spontaneously hypertensive rat(SHR). J Nutr Sci Vitaminol, 35(1), 91(1989).   DOI
49 Z. Wang, D. Luo, Z. Liang, Structure of polysaccharides from the fruiting body of Hericium erinaceous Pers, Carbohydr Polym., 57(3), 241(2004).   DOI   ScienceOn
50 Y. Kabir, M. Yanmaguchi, S. Kimura, Effect of shitake (Lentinus edodes) and maitake (Grifola frondosa) mushroom on blood pressure and plasma lipids of spontaneously hypertensive rat, J Nutr Sci Vitaminol, 33(5), 341(1987).   DOI
51 H. Kawagishi, A. Shimada, R. Shira, K. Okamoto, F. Ojima, H. Sakamoto, Y. Isiguro, S. Furukawa, Erinacines A, B, and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycela of Hericium erinaceum, Tetrahedron Lett, 35(10), 1569(1994).   DOI   ScienceOn
52 H. Kawagishi, M. Ando, T. Mizuno, Hericenone A and B as cytotoxic principles from the mushroom Hericium erinaceum, Tetrahedron Lett, 31(3), 373(1990).   DOI   ScienceOn
53 H. Kawagishi, M. Ando, H. Sakamoto, S. Yoshida, F. Ojima, Y. Ishguro, N. Ukai, T. Mizuno, Hericenones C, D, and E, stimulators of nerve growth factor (NGF)-synthesis, from the mushroom Hericium erinaceum, Tetrahedron Lett, 32(35), 4561(1991).   DOI   ScienceOn
54 K. Ueda, M. Tsujomori, S. Kodani, A. Chiba, M. Kubo, K. Masuno, A. Sekiya, K. Nagai, H. Kawagishi, An endoplasmic reticulum (ER) stress-suppressive compound and its analogues from the mushroom Hericium erinaceum, Bioorg Med Chem, 16(21), 9467(2008).   DOI   ScienceOn
55 T. Mizuno, T. Wasa, H. Ito, C. Suzuki, N. Ukai, Antitumor-active polysaccharides isolated from the fruiting body of Hericium erinaceum, an edible and medicinal mushroom called yamabushitake or houtou, Biosci Biotechnol Biochem, 56(2), 347(1992).   DOI   ScienceOn
56 K. Mori, S. Inatomi, K. Ouchi, Y. Azumi, T. Tuchida, Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial, Phytoher Res., 23(3), 367(2009).   DOI   ScienceOn
57 B. K. Yang, J. B. Park, C. H. Song, Hypolipidemic effect of an Exobiopolymer produced from a submerged mycelial culture of Hericium erinaceus, Biosci Biotechnol Biochem, 67(6), 1292(2003).   DOI   ScienceOn
58 S. H. Park, J. S. Chang, and K. R. Lee, Effect of Hericium erinaceus extract on cancer cell growth and expression of cell cycle associated proteins, J of Korean Society of Food Science and Nutrition, 32(6), 931(2003).   DOI
59 S. P. Kim, Y. H. Choi, M. Y. Kang, S. H. Nam, Effect of the extract by extraction procedures from Hericium erinaceus on activation of macrophage, J Korean Soc Appl Biol Chem, 48(3), 285(2005).
60 H. Kawagishi, A. Shimada, S. Hosokawa, H. Mori, H. Sakamoto, Y. Ishiguro, S. Sakemi, J. Bordner, N. Kojima, and S. Furukawa, Erinacines E, F and G stimulators of nerve growth factor(NGF)-synthesis from the mycelia of Hericium erimaceum, Tetrahedron Letters, 37(41), 7299(1996).   DOI   ScienceOn
61 W. Brand-Williams, M. E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity, Food Sci Technol, 28(1), 25(1995).
62 H. Ohkawa, N. Ohishi, K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal Biochem, 95(2), 351(1979).   DOI   ScienceOn
63 J. H. Kang, S. M. Kim, DNA cleavage by hydroxyl radicals generated in the Cu,Zn-Superoxide dismutase and hydrogen peroxide system, Mol Cells, 7(6), 777(1997).
64 U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227(5259), 680(1970).   DOI   ScienceOn
65 E. H. Ahn, D. W. Kim, M. J. Shin, Y. N. Kim, H. R. Kim, et al., PEP-1-ribosomal protein S3 protects dopaminergic neurons in an MPTP-induced Parkinson's disease mouse model, Free Radic Biol Med, 55, 36(2013).   DOI
66 M. J. Kim, D. W. Kim, J. H. Park, S. J. Kim, C. H. Lee, et al., PEP-1-SIRT2 inhibits inflammatory response and oxidative stress-induced cell death via expression of antioxidant enzymes in murine macrophages, Free Radic Biol Med, 63, 432(2013).   DOI
67 C. Behl, J. B. Davis, R. Lesley, D. Schubert, Hydrogen peroxide mediates amyloid beta protein toxicity, Cell, 77(6), 817(1994).   DOI   ScienceOn