• Title/Summary/Keyword: interface state density

Search Result 138, Processing Time 0.031 seconds

Transmission Electron Microscopy Study of Stacking Fault Pyramids Formed in Multiple Oxygen Implanted Silicon-on-Insulator Material

  • Park, Ju-Cheol;Lee, June-Dong;Krause, Steve J.
    • Applied Microscopy
    • /
    • v.42 no.3
    • /
    • pp.151-157
    • /
    • 2012
  • The microstructure of various shapes of stacking fault pyramids (SFPs) formed in multiple implant/anneal Separation by Implanted Oxygen (SIMOX) material were investigated by plan-view and cross-sectional transmission electron microscopy. In the multiple implant/anneal SIMOX, the defects in the top silicon layer are confined at the interface of the buried oxide layer at a density of ${\sim}10^6\;cm^{-2}$. The dominant defects are perfect and imperfect SFPs. The perfect SFPs were formed by the expansion and interaction of four dissociated dislocations on the {111} pyramidal planes. The imperfect SFPs show various shapes of SFPs, including I-, L-, and Y-shapes. The shape of imperfect SFPs may depend on the number of dissociated dislocations bounded to the top of the pyramid and the interaction of Shockley partial dislocations at each edge of {111} pyramidal planes.

Effect of Grain Boundary Energy on the Shrinkage Rate of Solid State Sintering (고상소결중의 수축률 변화에 미치는 입계에너지의 영향)

  • 윤한호;김도연
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 1986
  • The shrinkage rate of solid state sintering has been theoretically derived by combining the rate equation of material transport and the net free energy change resulting from the decrease of solid-vapor interface and the increase of grain boundary during sintering. For a sinteing model an idealized situation of the spherical particles with BCC packing was taken as the initial condition and the shrinkage was assumed to occur by forming the flat circualr grain boundaries on each particle. The plotted shrinkage rates as a function of grain boundary to surface energy ratio $(gamma_g/gamma_s)$ have shown that the relative density increases linearly at the initial stage of sintering but the shrinkage rate is decreased upon further sintering due to a decrease in driving force for densificaton. It has been also shown that the densification is critically affected by the $gamma_g/gamma_s$ ratio. In order to get the complete densificatin the ratio should be less than $sqrt{3}$. Any additive or atmospheric condition causing the decrease of$_g/gamma_s$ ratio will enhance sintering.

  • PDF

Compressible Two-Phase Flow Computations Using One-Dimensional ALE Godunov Method (ALE Godunov 법을 이용한 1 차원 압축성 이상유동 해석)

  • Shin, Sang-Mook;Kim, In-Chul;Kim, Yong-Jig
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.330-340
    • /
    • 2005
  • Compressible two-phase flow is analyzed based on the arbitrary Lagrangian-Eulerian (ALE) formulation. For water, Tamman type stiffened equation of state is used. Numerical fluxes are calculated using the ALE two-phase Godunov scheme which assumes only that the speed of sound and pressure can be provided whenever density and internal energy are given. Effects of the approximations of a material interface speed are Investigated h method Is suggested to assign a rigid body boundary condition effectively To validate the developed code, several well-known problems are calculated and the results are compared with analytic or other numerical solutions including a single material Sod shock tube problem and a gas/water shock tube problem The code is applied to analyze the refraction and transmission of shock waves which are impacting on a water-gas interface from gas or water medium.

The Study of Fluoride Film Properties for Thin Film Transistor Gate Insulator Application (박막트랜지스터 게이트 절연막 응용을 위한 불화막 특성연구)

  • Kim, Do-Yeong;Choe, Seok-Won;An, Byeong-Jae;Lee, Jun-Sin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.12
    • /
    • pp.755-760
    • /
    • 1999
  • Various fluoride films were investigated for a gate insulator of thin film transistor application. Conventional oxide containing materials like $SiO_2\;Ta_2O_5\; and \; Al_2O_3$ exhibited high interface states which lead to an increased threshold voltage and poor stability of TFT. In this paper, we investigated gate insulators using a binary matrix system of fluoride such as $CaF_2,\; SrF_2\; MgF_2,\; and\; BaF_2$. These materials exhibited an improvement in lattice mismatch, interface state and electrical stability. MIM and MIS devices were employed for an electrical characterization and structural property examination. Among the various fluoride materials, $CaF_2$ film showed an excellent lattice mismatch of 5%, breakdown electric field higher than 1.2MV/cm and leakage current density of $10^{-7}A/cm^2$. MIS diode having $Ca_2$ film as an insulation layer exhibited the interface states as low as $1.58\times10^{11}cm^{-2}eV^{-1}$. This paper probes a possibility of new gate insulator materials for TFT applications.

  • PDF

Investigation of Endurance Degradation in a CTF NOR Array Using Charge Pumping Methods

  • An, Ho-Myoung;Kim, Byungcheul
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.25-28
    • /
    • 2016
  • We investigate the effect of interface states on the endurance of a charge trap flash (CTF) NOR array using charge pumping methods. The endurance test was completed from one cell selected randomly from 128 bit cells, where the memory window value after 102 program/erase (P/E) cycles decreased slightly from 2.2 V to 1.7 V. However, the memory window closure abruptly accelerated after 103 P/E cycles or more (i.e. 0.97 V or 0.7 V) due to a degraded programming speed. On the other hand, the interface trap density (Nit) gradually increased from 3.13×1011 cm−2 for the initial state to 4×1012 cm−2 for 102 P/E cycles. Over 103 P/E cycles, the Nit increased dramatically from 5.51×1012 cm−2 for 103 P/E cycles to 5.79×1012 cm−2 for 104 P/E cycles due to tunnel oxide damages. These results show good correlation between the interface traps and endurance degradation of CTF devices in actual flash cell arrays.

Dependency of the Device Characteristics on Plasma Nitrided Oxide for Nano-scale PMOSFET (Nano-scale PMOSFET에서 Plasma Nitrided Oixde에 대한 소자 특성의 의존성)

  • Han, In-Shik;Ji, Hee-Hwan;Goo, Tae-Gyu;You, Ook-Sang;Choi, Won-Ho;Park, Sung-Hyung;Lee, Heui-Seung;Kang, Young-Seok;Kim, Dae-Byung;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.569-574
    • /
    • 2007
  • In this paper, the reliability (NBTI degradation: ${\Delta}V_{th}$) and device characteristic of nano-scale PMOSFET with plasma nitrided oxide (PNO) is characterized in depth by comparing those with thermally nitrided oxide (TNO). PNO case shows the reduction of gate leakage current and interface state density compared to TNO with no change of the $I_{D.sat}\;vs.\;I_{OFF}$ characteristics. Gate oxide capacitance (Cox) of PNO is larger than TNO and it increases as the N concentration increases in PNO. PNO also shows the improvement of NBTI characteristics because the nitrogen peak layer is located near the $Poly/SiO_2$ interface. However, if the nitrogen concentration in PNO oxide increases, threshold voltage degradation $({\Delta}V_{th})$ becomes more degraded by NBT stress due to the enhanced generation of the fixed oxide charges.

In Situ Spectroscopy in Condensed Matter Physics

  • Noh, Tae Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.92-92
    • /
    • 2014
  • Recently, many state-of-art spectroscopy techniques are used to unravel the mysteries of condensed matters. And numerous heterostructures have provided a new avenue to search for new emergent phenomena. Especially, near the interface, various forms of symmetry-breaking can appear, which induces many novel phenomena. Although these intriguing phenomena can be emerged at the interface, by using conventional measurement techniques, the experimental investigations have been limited due to the buried nature of interface. One of the ways to overcome this limitation is in situ investigation of the layer-by-layer evolution of the electronic structure with increasing of the thickness. Namely, with very thin layer, we can measure the electronic structure strongly affected by the interface effect, but with thick layer, the bulk property becomes strong. Angle-resolved photoemission spectroscopy (ARPES) is powerful tool to directly obtain electronic structure, and it is very surface sensitive. Thus, the layer-by-layer evolution of the electronic structure in oxide heterostructure can be investigated by using in situ ARPES. LaNiO3 (LNO) heterostructures have recently attracted much attention due to theoretical predictions for many intriguing quantum phenomena. The theories suggest that, by tuning external parameters such as misfit strain and dimensionality in LNO heterostructure, the latent orders, which is absent in bulk, including charge disproportionation, spin-density-wave order and Mott insulator, could be emerged in LNO heterostructure. Here, we performed in situ ARPES studies on LNO films with varying the misfit strain and thickness. (1) By using LaAlO3 (-1.3%), NdGaO3 (+0.3%), and SrTiO3 (+1.7%) substrates, we could obtain LNO films under compressive strain, nearly strain-free, and tensile strain, respectively. As strain state changes from compressive to tensile, the Ni eg bands are rearranged and cross the Fermi level, which induces a change of Fermi surface (FS) topology. Additionally, two different FS superstructures are observed depending on strain states, which are attributed to signatures of latent charge and spin orderings in LNO films. (2) We also deposited LNO ultrathin films under tensile strain with thickness between 1 and 10 unit-cells. We found that the Fermi surface nesting effect becomes strong in two-dimensions and significantly enhances spin-density-wave order. The further details are discussed more in presentation. This work was collaborated with Hyang Keun Yoo, Seung Ill Hyun, Eli Rotenberg, Ji Hoon Shim, Young Jun Chang and Hyeong-Do Kim.

  • PDF

Eelctrical and Structural Properties of $CaF_2$Films ($CaF_2$ 박막의 전기적, 구조적 특성)

  • 김도영;최석원;이준신
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1122-1127
    • /
    • 1998
  • Group II-AF_2$films such as $CaF_2$, $SrF_2$, and $BaF_2$ have been commonly used many practical applications such as silicon on insulatro(SOI), three-dimensional integrated circuits, buffer layers, and gate dielectrics in filed effect transistor. This paper presents electrical and structural properties of fluoride films as a gate dielectric layer. Conventional gate dielectric materials of TFTs like oxide group exhibited problems on high interface trap charge density($D_it$), and interface state incorporation with O-H bond created by mobile hydrogen and oxygen atoms. To overcome such problems in conventional gate insulators, we have investigated $CaF_2$ films on Si substrates. Fluoride films were deposited using a high vacuum evaporation method on the Si and glass substrate. $CaF_2$ films were preferentially grown in (200) plane direction at room temperature. We were able to achieve a minimum lattice mismatch of 0.74% between Si and $CaF_2$ films. Average roughness of $CaF_2$ films was decreased from 54.1 ${\AA}$ to 8.40 ${\AA}$ as temperature increased form RT and $300^{\circ}C$. Well fabricated MIM device showed breakdown electric field of 1.27 MV/cm and low leakage current of $10^{-10}$ A/$cm^2$. Interface trap charge density between $CaF_2$ film and Si substrate was as low as $1.8{\times}10^{11}cm^{-2}eV^{-1}$.

  • PDF

Relation between Resistance and Capacitance in Atomically Dispersed Pt-SiO2 Thin Films for Multilevel Resistance Switching Memory (Pt 나노입자가 분산된 SiO2 박막의 저항-정전용량 관계)

  • Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.429-434
    • /
    • 2015
  • Resistance switching memory cells were fabricated using atomically dispersed Pt-$SiO_2$ thin film prepared via RF co-sputtering. The memory cell can switch between a low-resistance-state and a high-resistance-state reversibly and reproducibly through applying alternate voltage polarities. Percolated conducting paths are the origin of the low-resistance-state, while trapping electrons in the negative U-center in the Pt-$SiO_2$ interface cause the high-resistance-state. Intermediate resistance-states are obtained through controlling the compliance current, which can be applied to multi-level operation for high memory density. It is found that the resistance value is related to the capacitance of the memory cell: a 265-fold increase in resistance induces a 2.68-fold increase in capacitance. The exponential growth model of the conducting paths can explain the quantitative relationship of resistance-capacitance. The model states that the conducting path generated in the early stage requires a larger area than that generated in the last stage, which results in a larger decrease in the capacitance.

Mechanism of Formation of Three Dimensional Structures of Particles in a Liquid Crystal

  • West, John L.;Zhang, Ke;Liao, Guangxun;Reznikov, Yuri;Andrienko, Denis;Glushchenko, Anatoliy V.
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.17-23
    • /
    • 2002
  • In this work we report methods of formation of three-dimensional structures of particles in a liquid crystal host. We found that, under the appropriate conditions, the particles are captured and dragged by the moving isotropic/nematic front during the phase transition process. This movement of the particles can be enhanced significantly or suppressed drastically with the influence of an electric field and/or with changing the conditions of the phase transition, such as the rate of cooling. As a result, a wide variety of particle structures can be obtained ranging from a fine-grained cellular structure to stripes of varying periods to a course-grained "root" structures. Changing the properties of the materials, such as the size and density of the particles and the surface anchoring of the liquid crystal at the particle surface, can also be used to control the morphology of the three-dimensional particle network and adjust the physical properties of the resulting dispersions. These particle structures may be used to affect the performance of LCD's much as polymers have been used in the past.