• Title/Summary/Keyword: integrally closed

Search Result 23, Processing Time 0.026 seconds

SOME EXAMPLES OF ALMOST GCD-DOMAINS

  • Chang, Gyu Whan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.601-607
    • /
    • 2011
  • Let D be an integral domain, X be an indeterminate over D, and D[X] be the polynomial ring over D. We show that D is an almost weakly factorial PvMD if and only if D + XDS[X] is an integrally closed almost GCD-domain for each (saturated) multiplicative subset S of D, if and only if $D+XD_1[X]$ is an integrally closed almost GCD-domain for any t-linked overring $D_1$ of D, if and only if $D_1+XD_2[X]$ is an integrally closed almost GCD-domain for all t-linked overrings $D_1{\subseteq}D_2$ of D.

ON THE PRINCIPAL IDEAL THEOREM

  • Chang, Gyu-Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.655-660
    • /
    • 1999
  • Let R be an integral domain with identity. In this paper we will show that if R is integrally closed or if t-dim $R{\leq}1$, then R[{$X_{\alpha}$}] satisfies the principal ideal theorem for each family {$X_{\alpha}$} of algebraically independent indeterminates if and only if R is an S-domain and it satisfies the principal ideal theorem.

  • PDF

INTEGRAL DOMAINS WITH FINITELY MANY STAR OPERATIONS OF FINITE TYPE

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.20 no.2
    • /
    • pp.185-191
    • /
    • 2012
  • Let D be an integral domain and SF(D) be the set of star operations of finite type on D. We show that if ${\mid}SF(D){\mid}$ < ${\infty}$, then every maximal ideal of D is a $t$-ideal. We give an example of integrally closed quasi-local domains D in which the maximal ideal is divisorial (so a $t$-ideal) but ${\mid}SF(D){\mid}={\infty}$. We also study the integrally closed domains D with ${\mid}SF(D){\mid}{\leq}2$.

THE CLASS GROUP OF D*/U FOR D AN INTEGRAL DOMAIN AND U A GROUP OF UNITS OF D

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.189-196
    • /
    • 2009
  • Let D be an integral domain, and let U be a group of units of D. Let $D^*=D-\{0\}$ and ${\Gamma}=D^*/U$ be the commutative cancellative semigroup under aU+bU=abU. We prove that $Cl(D)=Cl({\Gamma})$ and that D is a PvMD (resp., GCD-domain, Mori domain, Krull domain, factorial domain) if and only if ${\Gamma}$ is a PvMS(resp., GCD-semigroup, Mori semigroup, Krull semigroup, factorial semigroup). Let U=U(D) be the group of units of D. We also show that if D is integrally closed, then $D[{\Gamma}]$, the semigroup ring of ${\Gamma}$ over D, is an integrally closed domain with $Cl(D[{\Gamma}])=Cl(D){\oplus}Cl(D)$; hence D is a PvMD (resp., GCD-domain, Krull domain, factorial domain) if and only if $D[{\Gamma}]$ is.

  • PDF

m-CANONICAL IDEALS IN SEMIGROUPS

  • Kwak, Dong-Je;Kim, Myeong-Og;Park, Young-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.577-586
    • /
    • 2000
  • For a grading monoid S, we prove that (1) if (S, M) is a valuation semigroup, then M is an m-canonical ideal, that is, an ideal M such that M : (M:J)=J for every ideal J of S. (2) if S is an integrally closed semigroup and S has a principal m-canonical ideal, then S is a valuation semigroup, and (3) if S is a completely integrally closed and S has an m-canonical ideal I, then every ideal of S is I-invertible, that is, J+(I+J)=I for every ideal J of S.

  • PDF

Two Extensions of a Star Operation on D to the Polynomial Ring D[X]

  • Chang, Gyu Whan;Kim, Hwankoo
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.23-32
    • /
    • 2021
  • Let D be an integral domain with quotient field K, X an indeterminate over D, ∗ a star operation on D, and Cl∗ (D) be the ∗-class group of D. The ∗w-operation on D is a star operation defined by I∗w = {x ∈ K | xJ ⊆ I for a nonzero finitely generated ideal J of D with J∗ = D}. In this paper, we study two star operations {∗} and [∗] on D[X] defined by A{∗} = ∩P∈∗w-Max(D) ADP [X] and A[∗] = (∩P∈∗w-Max(D) AD[X]P[X]) ∩ AK[X]. Among other things, we show that Cl∗(D) ≅ Cl[∗](D[X]) if and only if D is integrally closed.

A QUESTION ABOUT MAXIMAL NON φ-CHAINED SUBRINGS

  • Atul Gaur;Rahul Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Let 𝓗0 be the set of rings R such that Nil(R) = Z(R) is a divided prime ideal of R. The concept of maximal non φ-chained subrings is a generalization of maximal non valuation subrings from domains to rings in 𝓗0. This generalization was introduced in [20] where the authors proved that if R ∈ 𝓗0 is an integrally closed ring with finite Krull dimension, then R is a maximal non φ-chained subring of T(R) if and only if R is not local and |[R, T(R)]| = dim(R) + 3. This motivates us to investigate the other natural numbers n for which R is a maximal non φ-chained subring of some overring S. The existence of such an overring S of R is shown for 3 ≤ n ≤ 6, and no such overring exists for n = 7.

SIMPLE VALUATION IDEALS OF ORDER 3 IN TWO-DIMENSIONAL REGULAR LOCAL RINGS

  • Noh, Sun-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.511-528
    • /
    • 2008
  • Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and $\upsilon$ be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple $\upsilon$-ideals $m\;=\;P_0\;{\supset}\;P_1\;{\supset}\;{\cdots}\;{\supset}\;P_t\;=\;P$ and all the other $\upsilon$-ideals are uniquely factored into a product of those simple ones [17]. Lipman further showed that the predecessor of the smallest simple $\upsilon$-ideal P is either simple or the product of two simple $\upsilon$-ideals. The simple integrally closed ideal P is said to be free for the former and satellite for the later. In this paper we describe the sequence of simple $\upsilon$-ideals when P is satellite of order 3 in terms of the invariant $b_{\upsilon}\;=\;|\upsilon(x)\;-\;\upsilon(y)|$, where $\upsilon$ is the prime divisor associated to P and m = (x, y). Denote $b_{\upsilon}$ by b and let b = 3k + 1 for k = 0, 1, 2. Let $n_i$ be the number of nonmaximal simple $\upsilon$-ideals of order i for i = 1, 2, 3. We show that the numbers $n_{\upsilon}$ = ($n_1$, $n_2$, $n_3$) = (${\lceil}\frac{b+1}{3}{\rceil}$, 1, 1) and that the rank of P is ${\lceil}\frac{b+7}{3}{\rceil}$ = k + 3. We then describe all the $\upsilon$-ideals from m to P as products of those simple $\upsilon$-ideals. In particular, we find the conductor ideal and the $\upsilon$-predecessor of the given ideal P in cases of b = 1, 2 and for b = 3k + 1, 3k + 2, 3k for $k\;{\geq}\;1$. We also find the value semigroup $\upsilon(R)$ of a satellite simple valuation ideal P of order 3 in terms of $b_{\upsilon}$.

t-LINKED OVERRINGS OF A NOETHERIAN DOMAIN

  • Chang, Gyu-Whan
    • Korean Journal of Mathematics
    • /
    • v.7 no.2
    • /
    • pp.167-169
    • /
    • 1999
  • Let R be a Noetherian domain. It is proved that $t$-dimR = 1 if and only if each (proper if R is not a valuation domain) $t$-linked overring D of R is of $t$-dimD = 1 if and only if each integrally closed $t$-linked overring of R is a Krull domain.

  • PDF