INTEGRALLY CLOSED MODULES

Yong Hwan Cho

Abstract

In this paper, we find some properties on integrally closed modules.

1. Introduction

Throughout the paper, all rings are commutative rings with identity and all modules are unitary. Let M be an R-module and S the set of nonzero divisors of R and R_{S} the total quotient ring of R. Put $T=T_{M}=\{t \in S \mid t m=0$ for some $m \in M$ implies $m=0\}$. Then we can easily show that T is a multiplicatively closed subset of S and $1 \in T$ and if M is torsion free then $T=S$.
M is called a multiplication module if every submodule N of M has the form $I M$ for some ideal I of R.
M. Alkan , B. Sarac and Y.Tyras([1]) introduced the concept of integral closedness for modules, a generalization of the concept of integral closedness for a ring.

In this paper we will find out some properties of integrally closed modules. Specially we prove Theorem 2.12,Theorem 2.13 and Theorem 2.14.

2. Integral Closedness of Modules

Proposition 2.1. Let M be an R-module, N a submodule of M and R_{T} the localization of R at T in the usual sense. For $\frac{r}{t} \in R_{T}$ and $n \in N$, let $\frac{r}{t} n \in M$ if there exists $m \in M$ such that $r n=t m$. Then this is a well defined operation.

[^0]Proof. Let $\frac{r_{1}}{t_{1}}=\frac{r_{2}}{t_{2}} \in R_{T}$ and $n \in N$ such that $r_{1} n=t_{1} m_{1}$ and $r_{2} n=t_{2} m_{2}$ for some $m_{1}, m_{2} \in M$. Then there exists $s \in T$ such that $s r_{1} t_{2}=s r_{2} t_{1}$. Hence $s t_{2} t_{1} m_{1}=s t_{2} r_{1} n=s r_{1} t_{2} n=s r_{2} t_{1} n=s t_{1} r_{2} n=$ $s t_{1} t_{2} m_{2}$. Since $s t_{1} t_{2} \in T$ and $s t_{1} t_{2}\left(m_{1}-m_{2}\right)=0, m_{1}=m_{2}$.

Proposition 2.2. R is an integrally closed ring if and only if $r_{n} y^{n}+$ $\cdots+r_{1} y+r_{0}=0$ for some positive integer $n, r_{i} \in R$ and $y \in R_{S}$, then $r_{n} y \in R$.

Proof. Suppose that R is integrally closed and $r_{n} y^{n}+r_{n-1} y^{n-1}+$ $\cdots+r_{1} y+r_{0}=0$ for $y \in R_{S}$ and $r_{i} \in R$. Then $r_{n}^{n-1}\left(r_{n} y^{n}+r_{n-1} y^{n-1}+\right.$ $\left.\cdots+r_{1} y+r_{0}\right)=0$ and $\left(r_{n} y\right)^{n}+r_{n-1}\left(r_{n} y\right)^{n-1}+r_{n-2} r_{n}\left(r_{n} y\right)^{n-2}+\cdots+$ $r_{1} r_{n}^{n-2}\left(r_{n} y\right)+r_{0} r_{n}^{n-1}=0$. Thus $r_{n} y \in R_{S}$ is integral over R and hence $r_{n} y \in R$. Conversely, Let $y \in R^{\prime}$, the integral closure of R. Then there are some $r_{i} \in R$ such that $y^{n}+r_{n-1} y^{n-1}+\cdots+r_{1} y+r_{0}=0$. Put $r_{n}=1$. Then by our assumption $r_{n} y=1 y=y \in R$ and $R^{\prime}=R$. So R is an integrally closed ring.

Observations from the above propositons allow us to define the concept of integrally closed modules which are equivalent to the concept of integrally closedness for the rings when they are considered as module over themselves. Alkan([1]) gives the following definition:

Definition 2.3. An R-module M is said to be integrallyclosed whenever $y^{n} m_{n}+\cdots+y m_{1}+m_{0}=0$ for some $y \in R_{T}$ and $m_{i} \in M$, then $y m_{n} \in M$.

Example 2.4. Let $R=Z, M=Q / Z$. Then we know easily that M is an integrally closed R-module.

Note that $S=Z-\{0\}$ and $T=\{s \in S \mid s m=0$ for some $m \in M$ implies $m=0\}$. If $s \in T$ and $s \neq 1$ then there exists $t \in Z$ such that $(s, t)=1, \frac{t}{s} \in Q-Z$ and $s\left(\frac{t}{s}+Z\right)=t+Z=Z$. Then we get $\frac{t}{s} \in Z$ and it is impossible. Hence $T=\{1\}$ and $R_{T}=\left\{\left.\frac{z}{1} \right\rvert\, z \in Z\right\}$. Assume that $\left(\frac{z}{1}\right)^{n}\left(q_{n}+Z\right)+\cdots+\left(\frac{z}{1}\right)\left(q_{1}+Z\right)+\left(q_{0}+Z\right)=0$ for some $q_{i} \in Q, \frac{z}{1} \in R_{T}$ and $q_{i}+Z \in Q / Z$. Clearly there exists $z q_{n}+Z \in Q / Z$ such that $1 \cdot\left(z q_{n}+Z\right)=z \cdot\left(q_{n}+Z\right)$ and so $\left(\frac{z}{1}\right)\left(q_{n}+Z\right) \in Q / Z$. By Proposition 2.2, $M=Q / Z$ is an integrally closed Z-module.

Proposition 2.5. Let M, M^{\prime} be R-modules and $\phi: M \rightarrow M^{\prime}$ an R isomorphism. If M is an integrally closed module then so is M^{\prime}.

Proof. Suppose that $y^{n} m_{n}^{\prime}+\cdots+y m_{1}^{\prime}+m_{0}^{\prime}=0$ for some $y=\frac{r}{t} \in$ $R_{T}, m_{i}^{\prime} \in M^{\prime}$. Then there exists $m_{i} \in M$ such that $\phi\left(m_{i}\right)=m_{i}^{\prime}$. Then $\left(\frac{r}{t}\right)^{n} \phi\left(m_{n}\right)+\cdots+\left(\frac{r}{t}\right) \phi\left(m_{1}\right)+\phi\left(m_{0}\right)=0$. Since $\frac{1}{t^{n}} \cdot \phi\left(r^{n} m_{n}+r^{n-1} t m_{n-1}+\right.$
$\left.\cdots+r t^{n-1} m_{1}+t^{n} m_{0}\right)=0$ and ϕ is an isomorphism, $r^{n} m_{n}+r^{n-1} t m_{n-1}+$ $\cdots+r t^{n-1} m_{1}+t^{n} m_{0}=0$. Again, $\left(\frac{r}{t}\right)^{n} m_{n}+\cdots+\left(\frac{r}{t}\right) m_{1}+m_{0}=0$. Since M is integrally closed, $\frac{r}{t} m_{n} \in M$ and hence there exists $m \in M$ such that $r m_{n}=t m$. Therefore $r \phi\left(m_{n}\right)=t \phi(m)$ and $\frac{r}{t} \phi\left(m_{n}\right) \in \phi(M)=M^{\prime}$ i.e., $y m_{n}^{\prime}=\frac{r}{t} m_{n}^{\prime} \in M^{\prime}$

Proposition 2.6. Let $\left\{M_{i}\right\}_{i \in \Lambda}$ be a collection of integrally closed submodules of an R-module M. Then $\cap M_{i}(i \in \Lambda)$ is an integrally closed submodule of M.

Proof. Let $K=\cap M_{i}(i \in \Lambda)$ and let $\left(\frac{r}{t}\right)^{n} k_{n}+\cdots+\left(\frac{r}{t}\right) k_{1}+k_{0}=0$ for some $\frac{r}{t} \in R_{T}$ and $k_{i} \in K$. Then for any $\lambda \in \Lambda, k_{i} \in M_{\lambda}$ and since M_{λ} is integrally closed, $\left(\frac{r}{t}\right) k_{n} \in M_{\lambda}$. Hence $\left(\frac{r}{t}\right) k_{n} \in K$.

Proposition 2.7. If M_{1} and M_{2} are integrally closed R-modules, then so is $M=M_{1} \oplus M_{2}$.

Proof. Let $\left(\frac{r}{t}\right)^{n} m_{n}+\left(\frac{r}{t}\right)^{n-1} m_{n-1}+\cdots+\left(\frac{r}{t}\right) m_{1}+m_{0}=0$ for some $t \in T, r \in R$ and $m_{i} \in M$. Put $m_{i}=m_{1}^{i}+m_{2}^{i}, m_{1}^{i} \in M_{1}$ and $m_{2}^{i} \in M_{2}$. Then $r^{n}\left(m_{1}^{n}+m_{2}^{n}\right)+t r^{n-1}\left(m_{1}^{n-1}+m_{2}^{n-1}\right)+\cdots+t^{n-1} r\left(m_{1}^{1}+m_{2}^{1}\right)+$ $t^{n}\left(m_{1}^{0}+m_{2}^{0}\right)=0$. Hence $r^{n} m_{1}^{n}+t r^{n-1} m_{1}^{n-1}+\cdots+t^{n-1} r m_{1}^{1}+t^{n} m_{1}^{0}=$ $-\left\{r^{n} m_{2}^{n}+t r^{n-1} m_{2}^{n-1}+\cdots+t^{n} m_{2}^{0}\right\} \in M_{1} \cap M_{2}=\{0\}$. Therefore $r^{n} m_{1}^{n}+t r^{n-1} m_{1}^{n-1}+\cdots+t^{n} m_{1}^{0}=0$ and so, $\left(\frac{r}{t}\right)^{n} m_{1}^{n}+\left(\frac{r}{t}\right)^{n-1} m_{1}^{n-1}+$ $\cdots+\left(\frac{r}{t}\right) m_{1}^{1}+m_{1}^{0}=0$. Since M_{1} is an integrally closed R-module, $\left(\frac{r}{t}\right) m_{1}^{n} \in M_{1}$. Similarly $\left(\frac{r}{t}\right) m_{2}^{n} \in M_{2}$ and $\left(\frac{r}{t}\right)\left(m_{1}^{n}+m_{2}^{n}\right)=\left(\frac{r}{t}\right) m_{n} \in M$. i.e., M is integrally closed.

The converse of the above proposition is true if M_{i} is torsion free module over a domain

Proposition 2.8. Let M_{1} and M_{2} be torsion free modules over a domain R. If $M=M_{1} \oplus M_{2}$ is integrally closed, then M_{1} and M_{2} are integrally closed.

Proof. Suppose that $\left(\frac{r}{t}\right)^{n} m_{1}^{n}+\cdots\left(\frac{r}{t}\right) m_{1}^{1}+m_{1}^{0}=0$ for $m_{1}^{i} \in M_{1}, r \in R$ and $t \in T$ (Note that $T=S$ since M_{i} is torsion free). Then $\left(\frac{r}{t}\right)^{n}\left(m_{1}^{n}+\right.$ $\left.0_{2}\right)+\cdots+\left(\frac{r}{t}\right)\left(m_{1}^{1}+0_{2}\right)+\left(m_{1}^{0}+0_{2}\right)=0$ where 0_{2} is a zero element in M_{2}. Since $M_{1} \oplus M_{2}$ is integrally closed, $\left(\frac{r}{t}\right)\left(m_{1}^{n}+0_{2}\right) \in M_{1} \oplus M_{2}$ and hence $r\left(m_{1}^{n}+0_{2}\right)=t\left(m_{1}^{\prime}+m_{2}^{\prime}\right)$ for some $m_{1}^{\prime} \in M_{1}$ and $m_{2}^{\prime} \in M_{2}$. So $r m_{1}^{n}-t m_{1}^{\prime}=t m_{2}^{\prime} \in M_{1} \cap M_{2}=\{0\}$ and $t m_{2}^{\prime}=0$. Since M_{2} is torsion free, $m_{2}^{\prime}=0$ and hence $\left(\frac{r}{t}\right) m_{1}^{n}=m_{1}^{\prime}+m_{2}^{\prime}=m_{1}^{\prime} \in M_{1}$. Thus M_{1} is integrally closed. Similarly we know that M_{2} is integrally closed.

Corollary 2.9. Let $\left\{M_{i}\right\}_{i \in \Lambda}$ be a finite collection of torsion free modules over a domain R, then the direct sum $M=\oplus_{i \in \Lambda} M_{i}$ is a integrally closed module if and only if each of M_{i} is an integrally closed module.

Corollary 2.10. Let $0 \rightarrow M_{1} \rightarrow M \rightarrow M_{2} \rightarrow 0$ be a split exact sequence of torsion free modules over a domain R, then M is an integrally closed module if and only if M_{1} and M_{2} are integrally closed modules.

Theorem 2.11. If R is an integral domain and M a faithful multiplication R-module, then M is finitely generated and torsion free

Proof. It follows from Theorem 3.1 of [4] and Lemma 4.1 of [3]
Theorem 2.12. If M is a faithful multiplication module over an integrally closed domain R and if $x \in R_{S}$ such that $x M \subseteq M$, then $x \in R$.

Proof. By Theorem 2.11, M is finitely generated and torsion free. Let $x=\frac{r}{t}$ and $M=R m_{1}+\cdots+R m_{s}$. Suppose that $\frac{r}{t} M \subseteq M$. Then for each $i(i=1, \cdots, s)$, there exists $a_{i j} \in R$ such that $r m_{i}=a_{i 1} m_{1}+\cdots+a_{i s} m_{s}$. Hence,

$$
\begin{aligned}
& \left(r-a_{11}\right) m_{1}-a_{12} m_{2}-\cdots-a_{1 s} m_{s}=0 \\
& \vdots \\
& -a_{s 1} m_{1}-a_{s 2} m_{2}-\cdots+\left(r-a_{s s}\right) m_{s}=0 \\
& \text { Let } b_{i j}=\delta_{i j} \cdot r-a_{i j}, \text { a matrix } B=\left(b_{i j}\right) \text { and } d=\operatorname{det} B \text { where, }
\end{aligned}
$$ $\delta_{i j}$ is a kronecker symbol. Let $B_{i j}$ be a cofactor of $b_{i j}$ in a matrix B. Now $0=\Sigma_{i} B_{i j} \cdot 0=\Sigma_{i} B_{i j}\left(\Sigma_{k} b_{i k} m_{k}\right)=\Sigma_{i} B_{i j}\left(b_{i j} m_{j}+\Sigma_{k \neq j} b_{i k} m_{k}\right)=$ $\Sigma_{i} B_{i j} b_{i j} m_{j}+\Sigma B_{i j} b_{i 1} m_{1}+\cdots+\Sigma_{i} B_{i j} b_{i j-1} m_{j-1}+\Sigma_{i} B_{i j} b_{i j+1} m_{i j+1}+$ $\cdots+\Sigma_{i} B_{i j} b_{i s} m_{s}=d m_{j}$ because $d=\operatorname{det} B=\Sigma_{i} B_{i j} b_{i j}$ and $0=\Sigma_{i} B_{i j} b_{i k}$ if $j \neq k$.

On the other hand, $d=r^{s}+\alpha_{s-1} r^{s-1}+\cdots+\alpha_{1} r+\alpha_{0}$ for some $\alpha_{i} \in R$ and we know that $d m_{i}=0$ for $i=1, \cdots, s$. Since M is torsion free, $d=0$ and so $0=\left(\frac{r}{t}\right)^{s}+\alpha_{s-1}\left(\frac{r}{t}\right)^{s-1}+\cdots+\alpha_{1}\left(\frac{r}{t}\right)+\alpha_{0}$ and $x=\frac{r}{t}$ is integral over R and hence $x \in R$ because R is integrally closed.

Theorem 2.13. Every injective module over an integral domain is integrally closed

Proof. Let M be an injective module over an integral domain R.For any $m \in M$ and any $0 \neq s$ in R, consider a short exact sequence of R-modules

$$
0 \longrightarrow R s \longrightarrow R
$$

where $R s \longrightarrow R$ is an inclusion. Now we define $f: R s \longrightarrow M$ by $f(r s)=r m$. Then f is a well defined R-module homomorphism. Since M is injective, there exists an R-module homomorphism $g: R \longrightarrow M$ such that $\left.g\right|_{R s}=f$. Hence $m=f(s)=g(s)=g(s \cdot 1)=s g(1) \in s M$ and so $M=s M$ for every nonzero element s in R. Now, let $y^{n} m_{n}+\cdots+$ $y m_{1}+m_{0}=0$ for some $y \in R_{T}$ and $m_{i} \in M$. Since $y \in R_{T}, y=\frac{r}{t}$ for some $r \in R$ and $t \in T=T_{M}$. If $r=0$ then clearly $y m_{n}=\frac{0}{t} m_{n} \in M$ since $0_{R} m_{n}=t 0_{M}$. If $r \neq 0$, then by above observation $r M=M$. So $y M=\frac{r}{t} M=\frac{1}{t}(r M)=\frac{1}{t} M$ and hence $M=t(y M)=y(t M)=y M$ since $t \in T=T_{M}$. Therefore $y m_{n} \in M$ and M is integrally closed.

Compare the following theorem with Proposition 13.29 of [5].
Theorem 2.14. Let R be an integral domain and M a faithful multiplication R-module. Then the following statements are equivalent;
(1) M is integrally closed.
(2) $M_{\mathcal{P}}$ is integrally closed for each prime ideal \mathcal{P} of R.
(3) $M_{\mathcal{M}}$ is integrally closed for each maximal ideal \mathcal{M} of R.

Proof. (1) \Rightarrow (2)
Let $y^{n} \frac{m_{n}}{t_{n}}+\cdots+y \frac{m_{1}}{t_{1}}+\frac{m_{0}}{t_{0}}=0$ for some positive integer $n, y\left(=\frac{r}{s}\right) \in$ R_{T} and $\frac{m_{i}}{t_{i}} \in M_{\mathcal{P}}$. Put $\breve{t_{i}}=t_{0} \cdots t_{i-1} t_{i+1} \cdot t_{n}, t=\prod_{i=0}^{n} t_{i}$. Then $t \notin \mathcal{P}$
$y^{n}\left(\breve{t_{n}} m_{n}\right)+\cdots+y\left(\breve{t_{1}} m_{1}\right)+\left(\breve{t_{0}} m_{0}\right)=0$. Since M is integrally closed, $y \breve{t_{n}} m_{n} \in M$ and $r \breve{t_{n}} m_{n}=s m^{\prime}$ for some $m^{\prime} \in M$. Thus $t_{n} r \breve{t_{n}} m_{n}=t_{n} s m^{\prime}$, $r t m_{n}=t_{n} s m^{\prime}$. So $r \cdot \frac{m_{n}}{t_{n}}=s \cdot \frac{m^{\prime}}{t}$. Hence $y \frac{m_{n}}{t_{n}} \in M_{\mathcal{P}}$.
$(2) \Rightarrow(3)$ is clear.
$(3) \Rightarrow(1)$.

By theorem 2.11, M is torsion free and hence $M \subseteq M_{\mathcal{M}}$ for each maximal ideal \mathcal{M} of R. Thus $M \subseteq K=\bigcap_{\mathcal{M}} M_{\mathcal{M}}$, where the intersection runs over all maximal ideals \mathcal{M} of R. Suppose that $K \neq M$.Then there exists $\frac{m}{r} \in K-M$. Now we put $\mathcal{A}=\{k \in R \mid k m=r n$ for some $n \in M\}$. Then clearly \mathcal{A} is a proper ideal of R. So there exists a maximal ideal \mathcal{N} containing \mathcal{A}. Since $\frac{m}{r} \in M_{\mathcal{N}}$, there exist $m^{\prime} \in M$ and $r^{\prime} \notin \mathcal{N}$ such that $\frac{m}{r}=\frac{m^{\prime}}{r^{\prime}}$. Hence there exists $s \notin \mathcal{N}$ such that $s\left(r^{\prime} m-r m^{\prime}\right)=0$. Since M is torsion free, $r^{\prime} m=r m^{\prime}$ and $r^{\prime} \in \mathcal{A} \subseteq \mathcal{N}$. We get a contradiction and $K=M$. For any maximal ideal \mathcal{M} of $R, M_{\mathcal{M}}$ is an R - submodule of M_{0}. Therefore M is integrally closed by Proposition 2.6. Note that we regard both $M_{\mathcal{P}}$ and $M_{\mathcal{M}}$ as an R-modules in this theorem.

References

[1] M.Alkan,B.Sarac,Y.Tiras., Dedekind Modules, Comm.in Algebra vol 33 (2005), 1617-1626.
[2] M.M.Ali., Invertibility of Multiplication Modules II, New Zealand J. of Math. vol 39 (2009), 45-64.
[3] Z.E.Bast and P.F.Smith, Multiplication Modules, Comm.in Algebra vol 16(4) (1988), 755-779.
[4] Y.H.Cho and Y.H.Kim., On Multiplication Modules(V), Honam Math.J vol 30(2) (2008), 363-368.
[5] R.Y.Sharp., Steps in Commutative Algebra, Cambridge University Press (1990).

Yong Hwan Cho

Dept.of Mathematics Education, Chonbuk National University, Jeonju 561-756, Korea.
E-mail: cyh@jbnu.ac.kr

[^0]: Received August 10, 2011. Accepted August 31, 2011.
 2000 Mathematics Subject Classification. 13C10, 13A15.
 Key words and phrases. integrally closed modules, faithful modules and multiplication modules.

