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THE CLASS GROUP OF D∗/U FOR D AN INTEGRAL

DOMAIN AND U A GROUP OF UNITS OF D

Gyu Whan Chang

Abstract. Let D be an integral domain, and let U be a group of
units of D. Let D∗ = D − {0} and Γ = D∗/U be the commuta-
tive cancellative semigroup under aU + bU = abU . We prove that
Cl(D) = Cl(Γ) and that D is a PvMD (resp., GCD-domain, Mori
domain, Krull domain, factorial domain) if and only if Γ is a PvMS
(resp., GCD-semigroup, Mori semigroup, Krull semigroup, factorial
semigroup). Let U = U(D) be the group of units of D. We also show
that if D is integrally closed, then D[Γ], the semigroup ring of Γ over
D, is an integrally closed domain with Cl(D[Γ]) = Cl(D)⊕ Cl(D);
hence D is a PvMD (resp., GCD-domain, Krull domain, factorial
domain) if and only if D[Γ] is.

1. Introduction

Let D be an integral domain with quotient field K, and U(D) be the
group of units of D. Let D∗ = D−{0}, K∗ = K−{0}, and U be a sub-
group of U(D). The U(D) is a subgroup of the multiplicative group K∗,
and the group operation on the factor group G(D) = K∗/U(D) is writ-
ten as addition aU(D)+ bU(D) = abU(D). For xU(D), yU(D) ∈ G(D),
define xU(D) ≤ yU(D) if and only if y

x
∈ D. Then the realtion ≤ is a

partial order on G(D) compatible with its group operation. The group
G(D), partially ordered under ≤, is called the group of divisibility of D.
It is well known that G(D) is lattice ordered (resp., totally ordered) if
and only if D is a GCD-domain (resp., valuation domain) [3, Theorems
16.2 and 16.3]. It is clear that D∗/U(D) is a semigroup with quotient
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group G(D). More generally, D∗/U is a commutative cancellative semi-
group (under addition aU + bU = abU) with quotient field K∗/U (see
Lemma 1). In this paper, we study the multiplicative t-ideal structures
of the semigroup D∗/U via those of the integral domain D.

Let Γ = D∗/U . For a nonzero fractional ideal I of D and a frac-
tional ideal J of Γ, let Is = {aU |0 6= a ∈ I} and Jr = ({x|xU ∈ J}).
In this paper, we show that (Is)t = (It)s; I is a (prime) t-ideal if and
only if Is is a (prime) t-ideal; if I is a t-ideal, then (Is)r = I; and
I is t-invertible if and only if Is is t-invertible. We also show that
(Jr)t = (Jt)r; J is a (prime) t-ideal if and only if Jr is a (prime) t-
ideal; if J is a t-ideal, then (Jr)s = I; and J is t-invertible if and only if
Jr is t-invertible. As a corollary, we have that D is a PvMD (resp., GCD-
domain, Mori domain, Krull domain, factorial domain) if and only if Γ
is a PvMS (resp., GCD-semigroup, Mori semigroup, Krull semigroup,
factorial semigroup). Also, we prove that Cl(D) = Cl(D∗/U), i.e., the
map ϕ : Cl(D) → Cl(D∗/U), given by cl(I) → cl(Is), is a group iso-
morphism. We show that D is a PvMD (resp., GCD-domain, Krull
domain, factorial domain) if and only if D[D∗/U(D)] is a PvMD (resp.,
GCD-domain, Krull domain, factorial domain).

We first review some definitions and notations. Let F(D) be the
set of nonzero fractional ideals of D. For each I ∈ F(D), let I−1 =
{x ∈ K|xI ⊆ D}, Iv = (I−1)−1, and It = ∪{Jv|J is a nonzero finitely
generated subideal of I}. An I ∈ F(D) is called a v-ideal (resp., t-ideal)
if Iv = I (resp., It = I), while a t-ideal is a maximal t-ideal if it is
maximal among proper integral t-ideals of D. It is well known that a
prime ideal minimal over a t-ideal is a t-ideal; hence if D is not a field,
then t-Spec(D) 6= ∅, where t-Spec(D) is the set of prime t-ideals of D.
An I ∈ F(D) is said to be t-invertible if (II−1)t = D; equivalently,
II−1 * P for all maximal t-ideals P of D. We say that D is a Mori
domain if D satisfies the ascending chain condition on integral v-ideals;
equivalently, each v-ideal I of D is of finite type, i.e., I = (ai, . . . , an)v for
some ai ∈ D. It is well known that Krull domains are Mori. The ring
D is called a Prüfer v-multiplication domain (PvMD) if each nonzero
finitely generated ideal of D is t-invertible. The (t-)class group of D is
an ableian group Cl(D) = T (D)/Prin(D), where T (D) is the group of t-
invertible fractional t-ideals of D under the t-multiplication I ∗J = (IJ)t
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and Prin(D) is the subgroup of T (D) of principal fractional ideals. We
denote by cl(I) the class of Cl(D) containing I.

Let Γ be a commutative cancellative semigroup. As in the domain
case, we can define the v- and t-operation; (maximal, prime) t-ideals;
t-Spec(Γ); Mori semigroup; t-invertibility; Prüfer v-multiplication semi-
group (PvMS); and the (t-)class group for Γ. The reader can refer to
[3, §32 and §34] for the v- and t-operation on integral domains; to [4,
§16] or [5, §11] for the v- and t-operation on semigroups; and to [5] for
semigroups.

2. Cl(D) = Cl(D∗/U) for U a group of units of D

Throughout D is an integral domain with quotient field K, D∗ =
D − {0}, K∗ = K − {0} and U is a group of units of D (hence U is a
subgroup of the multiplicative group K∗).

Lemma 1. Let U be a group of units of D, Γ = D∗/U and G = K∗/U .

(1) Γ is a commutative cancellative semigroup under addition
aU + bU = abU .

(2) G is the quotient group of Γ.

(3) Γ is torsion-free if and only if xn ∈ U implies x ∈ U for any x ∈ K∗

and an integer n ≥ 1.

Proof. This is an easy exercise.

Definition 2. Let U be a group of units of D, and Γ = D∗/U be the
additive semigroup with quotient group G = K∗/U . Let I be a nonzero
fractional ideal of D and J be a fractional ideal of Γ. Define

Is = {aU |0 6= a ∈ I} and Jr = ({x|xU ∈ J}).
Clearly, Is and Jr are fractional ideals of Γ and D, respectively.

For {aα} ⊆ K∗, we denote by ({aα}) (resp., [{aαU}]) the fractional
ideal of D (resp., Γ) generated by {aα} (resp., {aαU}); hence ({aα}) =
{∑ aαi

di|aαi
∈ {aα} and di ∈ D} and [{aαU}] = ∪α(aαU + Γ). We first

study the fractional ideal Is of D∗/U for a nonzero fractional ideal I of
D.
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Proposition 3. Let U be a group of units of D, and let Γ = D∗/U
be the semigroup. Let I be a nonzero fractional ideal of D and {aα},
{bβ} be nonempty subsets of K∗.
(1) If ({aα})v ⊆ ({bβ})v, then [{aαU}]v ⊆ [{bβU}]v.
(2) (Is)

−1 = (I−1)s; hence (Is)v = (Iv)s.
(3) (Is)t = (It)s.
(4) I is a t-ideal if and only if Is is a t-ideal.
(5) (Is)r = I, and I is a prime ideal if and only if Is is a prime ideal.
(6) ((I1I2)s)t = ((I1)s + (I2)s)t for any I1, I2 ∈ F(D).
(7) I is a t-invertible t-ideal if and only if Is is a t-invertible t-ideal.

Proof. (1) Let x ∈ K∗. Then xU ∈ [{bβU}]−1 ⇒ xbβU = xU +
bβU ∈ Γ for all bβ ⇒ xbβ ∈ D for all bβ ⇒ x ∈ ({bβ})−1 ⊆ ({aα})−1

by assumption ⇒ xaα ∈ D for all aα ⇒ xU + aαU = xaαU ∈ Γ for
all aα ⇒ xU ∈ [{aαU}]−1. Hence [{bβU}]−1 ⊆ [{aαU}]−1, and thus
[{aαU}]v ⊆ [{bβU}]v.

(2) Let y ∈ K∗. Then yU ∈ (Is)
−1 ⇔ yaU = yU + aU ∈ Γ for all

0 6= a ∈ I, ⇔ ya ∈ D for all 0 6= a ∈ I, ⇔ y ∈ I−1, ⇔ yU ∈ (I−1)s.
(3) Let y ∈ K∗. Then yU ∈ (Is)t ⇔ yU ∈ [{aiU}]v = (({ai})v)s for

some finite set {aiU} ⊆ Is (see (2) for the equality), ⇔ y ∈ ({ai})v for
some finite set {ai} ⊆ I, ⇔ y ∈ It, ⇔ yU ∈ (It)s.

(4) If I is a t-ideal, then (Is)t = (It)s = Is by (3). Conversely, assume
that Is is a t-ideal; so Is = (It)s by (3). If 0 6= x ∈ It, then xU ∈ Is, and
hence xU = aU for some 0 6= a ∈ I or x ∈ aD ⊆ I. Hence It ⊆ I, and
thus It = I.

(5) Let x ∈ K∗, and suppose that x ∈ (Is)r. Then x =
∑

aibi for
some bi ∈ D∗ and ai ∈ K∗ with aiU ∈ Is; so xU ∈ [{aiU}] ⊆ Is or
xU = aU for some 0 6= a ∈ I. Hence x ∈ I. Clearly, I ⊆ (Is)r, and thus
(Is)r = I. Next, if a ∈ D∗, then (Is)r = I implies “a ∈ I ⇔ aU ∈ Is”,
and thus I is prime if and only if Is is prime.

(6) Let 0 6= x ∈ I1I2. Then x =
∑

aibi for some 0 6= ai ∈ I1 and
0 6= bi ∈ I2; hence x ∈ ({aibi})v, and by (1) xU ∈ [{aibiU}]v ⊆ ([{aiU}]+
[{biU}])v ⊆ ((I1)s + (I2)s)t. Hence (I1I2)s ⊆ ((I1)s + (I2)s)t, and thus
((I1I2)s)t ⊆ ((I1)s +(I2)s)t. Conversely, note that (I1)s +(I2)s ⊆ (I1I2)s;
so ((I1)s + (I2)s)t ⊆ ((I1I2)s)t. Thus ((I1)s + (I2)s)t = ((I1I2)s)t.

(7) By (2), (3) and (6), we have Γ = ((II−1)t)s = ((II−1)s)t = ((Is)+
(I−1)s)t = ((Is) + (Is)

−1)t. Thus (II−1)t = D if and only if ((Is) +
(Is)

−1)t = Γ.
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We next study the ideal Jr of D for a fractional ideal J of D∗/U .

Proposition 4. Let U be a group of units of D and Γ = D∗/U be
the semigroup. Let J be a fractional ideal of Γ.
(1) (Jr)

−1 = (J−1)r; hence (Jr)v = (Jv)r.
(2) (Jr)t = (Jt)r.
(3) If J is a t-ideal, then Jr is a t-ideal and (Jr)s = J .
(4) If J is t-invertible, then Jr is t-invertible.
(5) If J is a t-ideal, then J is prime if and only if Jr is prime.

Proof. (1) Let x ∈ K∗, and note that xa ∈ D for all a ∈ K∗ with
aU ∈ J if and only if xJr ⊆ D. Hence x ∈ (Jr)

−1 ⇒ xJr ⊆ D ⇒
xU + J ⊆ Γ ⇒ xU ∈ J−1 ⇒ x ∈ (J−1)r. Conversely, if x ∈ (J−1)r,
then x ∈ (a1, . . . , an) for some ai ∈ K∗ with aiU ∈ J−1. Hence xJr ⊆
(a1, . . . , an)Jr, and since aiU + J ⊆ Γ, we have aiJr ⊆ D, and thus
xJr ⊆ D or x ∈ (Jr)

−1.
(2) Let x ∈ K∗. Suppose x ∈ (Jr)t. Then x ∈ (a1, . . . , an)v for some

0 6= a1, . . . , an ∈ Jr. Note that ai ∈ (b1, . . . , bm) for some bi ∈ K∗ with
biU ∈ J ; so replacing ai with {bj}, we may assume that aiU ∈ J . Hence
by Proposition 3(1), xU ∈ [a1U, . . . , anU ]v ⊆ Jt, and thus x ∈ (Jt)r.
Conversely, x ∈ (Jt)r ⇒ x ∈ (c1, . . . , ck) for some ci ∈ K∗ with ciU ∈ Jt

⇒ xU ∈ [c1U, . . . , ckU ]v ⊆ (Jt)t = Jt by Proposition 3(1) ⇒ x ∈ (Jt)r.
(3) By (2), Jr is a t-ideal. Next, if xU ∈ (Jr)s, then x ∈ Jr; hence

x ∈ (a1, . . . , an) for some ai ∈ K∗ with aiU ∈ J . Thus by Proposition
3(1), xU ∈ [a1U, . . . , anU ]v ⊆ Jt = J . Clearly, J ⊆ (Jr)s, and thus
J = (Jr)s.

(4) Clearly, (J + J−1)r ⊆ (Jr)(Jr)
−1; so (J + J−1)r ⊆ (Jr)(J

−1)r by
(1). Conversely, if x ∈ (Jr)(J

−1)r, then x =
∑

aibi for some ai ∈ Jr

and bi ∈ (J−1)r; so x ∈ ({aibi}) = [{aibiU}]r ⊆ (J + J−1)r. Hence (J +
J−1)r = (Jr)(J

−1)r, and thus D = (Γ)r = ((J + J−1)t)r = ((Jr)(J
−1)r)t

by (2).
(5) By Proposition 3(4), Jr is a prime ideal if and only if (Jr)s is a

prime ideal. Thus by (3), Jr is prime if and only if J is prime.

Remark 5. Let U be a group of units of D, and let Γ = D∗/U be
the semigroup.

(1) Let a, b be nonzero nonunits of D such that (a, b) = D (for exam-
ple, D has at least two maximal ideals). Let J = [aU, bU ], then Jr = D
and (Jr)s = Γ. Thus the (3) and (5) of Propositon 4 does not hold if J is
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not a t-ideal. For Proposition 4(4), note that if J is t-invertible, then Jr

is t-invertible, and hence (Jr)s is t-invertible by Proposition 3(7). Thus
if J is a t-ideal, then J is t-invertible if and only if Jr is t-invertible.

(2) Let Div(D) (resp., Div(D∗/U)) be the semigroup of fractional
t-ideals of D (resp., D∗/U) under I1 ∗ I2 = (I1I2)t (resp., J1 ∗ J2 =
(I1 + J2)t). Propositions 3 and 4 show that the map π : Div(D) →
Div(D∗/U), given by I → Is, is a semigroup isomorphism. Also, Propo-
sitions 3(5) and 4(5) show that the restriction of π to t-Spec(D) is a
bijection from t-Spec(D) into t-Spec(D∗/U).

We next study the relation between Cl(D) and Cl(D∗/U). Set Γ =
D∗/U , and let cl(I1), cl(I2) ∈ Cl(D). Note that if cl(I1) = cl(I2), then
I1 = xI2 for some x ∈ K∗; so (I1)s = (xI2)s = xU + (I2)s. Note
also that (I1)s and (xI2)s are t-invertible t-ideals by Proposition 3(7),
hence cl((I1)s) = cl((I2)s). Thus the map ϕ : Cl(D) → Cl(Γ), given by
cl(I) → cl(Is), is well-defined. We next show Cl(D) = Cl(D∗/U), which
means that ϕ is a group isomorphism.

Corollary 6. Cl(D) = Cl(D∗/U).

Proof. We first show that ϕ is a group homomorphism.
Let cl(I1), cl(I2) ∈ Cl(D), and note that ((I1I2)t)s = ((I1I2)s)t = ((I1)s+
(I2)s)t by Proposition 3(3) and (6). Hence ϕ(cl((I1I2)t)) = cl((I1I2)t)s) =
cl((I1)s) + cl((I2)s) = ϕ(cl((I1)s) + ϕ(cl((I1)s).

Next, if Is = aU +Γ, then I = (Is)r = (aU +Γ)r = aD by Proposition
3(5). Since ϕ is a homomorphism, ϕ is injective. Finally, we show that
ϕ is surjective, and hence ϕ is a group isomorphism. To do this, let
cl(J) ∈ Γ, where J is a t-invertible t-ideal of Γ. Then Jr is a t-invertible
t-ideal of D such that (Jr)s = J by Proposition 4(3) and (4). Hence
cl(Jr) ∈ Cl(D) such that ϕ(cl(Jr)) = cl(J).

Let D be an integrally closed domain, and assume that D is not a
valuation domain. Then G = K∗/U(D) is totally ordered by Lemma
1(3) and [4, Corollary 3.4] but G(D), the group of divisibility of D, is
not totally ordered. Thus the order of G(D) is different from that of G.

Corollary 7. Let Γ = D∗/U be the semigroup.
(1) D is a PvMD if and only if Γ is a PvMS.
(2) D is a GCD-domain if and only if Γ is a GCD-semigroup.
(3) D is a Mori domain if and only if Γ is a Mori semigroup.
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(4) (cf. [5, Theorem 23.4]) D is a Krull domain if and only if Γ is a Krull
semigroup.
(5) D is a factorial domain if and only if Γ is a factorial semigroup.

Proof. (1) Suppose that D is a PvMD, and let J be a finite type t-
ideal of Γ, i.e., J = [a1U, . . . , anU ]v for some aiU ∈ Γ. Then Jr = ({ai})v

by Proposition 4(1); hence Jr is t-ivertible and thus J = (Jr)s is t-
invertible by Propositions 3(7) and 4(3). Thus Γ is a PvMS. Conversely,
assume that Γ is a PvMS, and let I = (b1, . . . , bm)v for bi ∈ D∗. Then
Is = [b1U, . . . , bmU ]v by Proposition 3. Hence Is is t-invertible, and thus
I = (Is)r is t-invertible by Proposition 3(4) and (7). Thus D is a PvMD.

(2) This is an immediate consequence of (1) and Corollary 6 because
a PvMD D (resp., PvMS Γ) is a GCD-domain (resp., GCD-semigroup)
if and only if Cl(D) = 0 (resp., Cl(Γ) = 0).

(3) This is an immediate consequence of Proposition 3(3) and (5) and
Proposition 4(2) and (3).

(4) This can be proved by the same arguement as in the proof of (1)
because each t-ideal of Krull domains and Krull semigroups is of finite
type.

(5) Note that a Krull domain D (resp., Krull semigroup Γ) is factorial
if and only if Cl(D) = 0 (resp., Cl(Γ) = 0). Thus the result is an
immediate consequence of (4) and Corollary 6.

Let Γ be a commutative cancellative semigroup, and let D[Γ] be the
semigroup ring of Γ over D. It is known that Γ is torsion-free if and only
if D[Γ] is an integral domain [4, Theorem 8.1] and that D[Γ] is integrally
closed if and only if D and Γ are integrally closed [4, Corollary 12.11].

Lemma 8. Let Γ = D∗/U(D) be the semigroup. If D is integrally
closed, then Γ is torsion-free, and hence D[Γ] is an integrally closed
domain with Cl(D[Γ]) = Cl(D)⊕ Cl(D).

Proof. For x ∈ K∗, assume that xnU(D) = U(D) for an integer n ≥ 1.
Then xn ∈ U(D) ⊆ D, and since D is integrally closed, x ∈ D. Also,
xxn−1 = xn ∈ U(D) implies x ∈ U(D). Hence xU(D) = U(D). Thus Γ
is torsion-free.

Next, it is clear that Γ is integrally closed; hence D[Γ] is integrally
closed and Cl(D[Γ]) = Cl(D)⊕ Cl(D) by Corollary 6 and [2, Corollary
2.11].
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Corollary 9. The following statements are equivalent for Γ =
D∗/U(D).
(1) D is a PvMD (resp., GCD-domain, Krull domain, factorial domain).
(2) D[Γ] is a PvMD (resp., GCD-domain, Krull domain, factorial domain).
(3) K[Γ] is a PvMD (resp., GCD-domain, Krull domain, factorial domain).
(4) D[G] is a PvMD (resp., GCD-domain, Krull domain, factorial domain).

Proof. The PvMD and Krull domain cases.
(1) ⇔ (2) and (1) ⇔ (3) These follow directly from Corollary 7 and

[1, Proposition 6.5] (resp., [4, Theorem 15.6]). (2) ⇒ (4) This follows
because D[G] = D[Γ]N , where N = {Xα|α ∈ Γ}. (4) ⇒ (1) This follows
because D[G] ∩K = D.

The GCD-domain and factorial domains cases are immediate conse-
quences of Lemma 8 and the PvMD and Krull domain cases because D
is a GCD-domain (resp., factorial domain) if and only if D is a PvMD
(resp., Krull domain) and Cl(D) = 0.
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