THE CLASS GROUP OF D^*/U FOR D AN INTEGRAL DOMAIN AND U A GROUP OF UNITS OF D

GYU WHAN CHANG

ABSTRACT. Let D be an integral domain, and let U be a group of units of D. Let $D^* = D - \{0\}$ and $\Gamma = D^*/U$ be the commutative cancellative semigroup under aU + bU = abU. We prove that $Cl(D) = Cl(\Gamma)$ and that D is a PvMD (resp., GCD-domain, Mori domain, Krull domain, factorial domain) if and only if Γ is a PvMS (resp., GCD-semigroup, Mori semigroup, Krull semigroup, factorial semigroup). Let U = U(D) be the group of units of D. We also show that if D is integrally closed, then $D[\Gamma]$, the semigroup ring of Γ over D, is an integrally closed domain with $Cl(D[\Gamma]) = Cl(D) \oplus Cl(D)$; hence D is a PvMD (resp., GCD-domain, Krull domain, factorial domain) if and only if $D[\Gamma]$ is.

1. Introduction

Let D be an integral domain with quotient field K, and U(D) be the group of units of D. Let $D^* = D - \{0\}$, $K^* = K - \{0\}$, and U be a subgroup of U(D). The U(D) is a subgroup of the multiplicative group K^* , and the group operation on the factor group $G(D) = K^*/U(D)$ is written as addition aU(D) + bU(D) = abU(D). For $xU(D), yU(D) \in G(D)$, define $xU(D) \leq yU(D)$ if and only if $\frac{y}{x} \in D$. Then the realtion \leq is a partial order on G(D) compatible with its group operation. The group G(D), partially ordered under \leq , is called the group of divisibility of D. It is well known that G(D) is lattice ordered (resp., totally ordered) if and only if D is a GCD-domain (resp., valuation domain) [3, Theorems 16.2 and 16.3]. It is clear that $D^*/U(D)$ is a semigroup with quotient

Received May 11, 2009. Revised June 5, 2009.

²⁰⁰⁰ Mathematics Subject Classification: 13A15, 13C20, 13F05, 20M12.

Key words and phrases: class group, a group U of units of an integral domain D, the semigroup D^*/U .

group G(D). More generally, D^*/U is a commutative cancellative semi-group (under addition aU + bU = abU) with quotient field K^*/U (see Lemma 1). In this paper, we study the multiplicative t-ideal structures of the semigroup D^*/U via those of the integral domain D.

Let $\Gamma = D^*/U$. For a nonzero fractional ideal I of D and a fractional ideal J of Γ , let $I_s = \{aU|0 \neq a \in I\}$ and $J_r = (\{x|xU \in J\})$. In this paper, we show that $(I_s)_t = (I_t)_s$; I is a (prime) t-ideal if and only if I_s is a (prime) t-ideal; if I is a t-ideal, then $(I_s)_r = I$; and I is t-invertible if and only if I_s is t-invertible. We also show that $(J_r)_t = (J_t)_r$; J is a (prime) t-ideal if and only if J_r is a (prime) t-ideal; if J is a t-ideal, then $(J_r)_s = I$; and J is t-invertible if and only if J_r is t-invertible. As a corollary, we have that D is a PvMD (resp., GCD-domain, Mori domain, Krull domain, factorial domain) if and only if Γ is a PvMS (resp., GCD-semigroup, Mori semigroup, Krull semigroup, factorial semigroup). Also, we prove that $Cl(D) = Cl(D^*/U)$, i.e., the map $\varphi : Cl(D) \to Cl(D^*/U)$, given by $cl(I) \to cl(I_s)$, is a group isomorphism. We show that D is a PvMD (resp., GCD-domain, Krull domain, factorial domain) if and only if $D[D^*/U(D)]$ is a PvMD (resp., GCD-domain, Krull domain, factorial domain).

We first review some definitions and notations. Let $\mathbf{F}(D)$ be the set of nonzero fractional ideals of D. For each $I \in \mathbf{F}(D)$, let $I^{-1} =$ $\{x \in K | xI \subseteq D\}, I_v = (I^{-1})^{-1}, \text{ and } I_t = \bigcup \{J_v | J \text{ is a nonzero finitely }\}$ generated subideal of I}. An $I \in \mathbf{F}(D)$ is called a v-ideal (resp., t-ideal) if $I_v = I$ (resp., $I_t = I$), while a t-ideal is a maximal t-ideal if it is maximal among proper integral t-ideals of D. It is well known that a prime ideal minimal over a t-ideal is a t-ideal; hence if D is not a field, then $t\text{-Spec}(D) \neq \emptyset$, where t-Spec(D) is the set of prime t-ideals of D. An $I \in \mathbf{F}(D)$ is said to be t-invertible if $(II^{-1})_t = D$; equivalently, $II^{-1} \nsubseteq P$ for all maximal t-ideals P of D. We say that D is a Mori domain if D satisfies the ascending chain condition on integral v-ideals; equivalently, each v-ideal I of D is of finite type, i.e., $I=(a_i,\ldots,a_n)_v$ for some $a_i \in D$. It is well known that Krull domains are Mori. The ring D is called a Prüfer v-multiplication domain (PvMD) if each nonzero finitely generated ideal of D is t-invertible. The (t-) class group of D is an ableian group Cl(D) = T(D)/Prin(D), where T(D) is the group of tinvertible fractional t-ideals of D under the t-multiplication $I*J = (IJ)_t$

and Prin(D) is the subgroup of T(D) of principal fractional ideals. We denote by cl(I) the class of Cl(D) containing I.

Let Γ be a commutative cancellative semigroup. As in the domain case, we can define the v- and t-operation; (maximal, prime) t-ideals; t-Spec(Γ); Mori semigroup; t-invertibility; Prüfer v-multiplication semigroup (PvMS); and the (t-)class group for Γ . The reader can refer to [3, §32 and §34] for the v- and t-operation on integral domains; to [4, §16] or [5, §11] for the v- and t-operation on semigroups; and to [5] for semigroups.

2. $Cl(D) = Cl(D^*/U)$ for U a group of units of D

Throughout D is an integral domain with quotient field K, $D^* = D - \{0\}$, $K^* = K - \{0\}$ and U is a group of units of D (hence U is a subgroup of the multiplicative group K^*).

LEMMA 1. Let U be a group of units of D, $\Gamma = D^*/U$ and $G = K^*/U$.

- (1) Γ is a commutative cancellative semigroup under addition aU + bU = abU.
- (2) G is the quotient group of Γ .
- (3) Γ is torsion-free if and only if $x^n \in U$ implies $x \in U$ for any $x \in K^*$ and an integer $n \geq 1$.

DEFINITION 2. Let U be a group of units of D, and $\Gamma = D^*/U$ be the additive semigroup with quotient group $G = K^*/U$. Let I be a nonzero fractional ideal of D and J be a fractional ideal of Γ . Define

$$I_s = \{aU | 0 \neq a \in I\} \text{ and } J_r = (\{x | xU \in J\}).$$

Clearly, I_s and J_r are fractional ideals of Γ and D, respectively.

For $\{a_{\alpha}\}\subseteq K^*$, we denote by $(\{a_{\alpha}\})$ (resp., $[\{a_{\alpha}U\}]$) the fractional ideal of D (resp., Γ) generated by $\{a_{\alpha}\}$ (resp., $\{a_{\alpha}U\}$); hence $(\{a_{\alpha}\})=\{\sum a_{\alpha_i}d_i|a_{\alpha_i}\in\{a_{\alpha}\}$ and $d_i\in D\}$ and $[\{a_{\alpha}U\}]=\cup_{\alpha}(a_{\alpha}U+\Gamma)$. We first study the fractional ideal I_s of D^*/U for a nonzero fractional ideal I of D.

PROPOSITION 3. Let U be a group of units of D, and let $\Gamma = D^*/U$ be the semigroup. Let I be a nonzero fractional ideal of D and $\{a_{\alpha}\}, \{b_{\beta}\}$ be nonempty subsets of K^* .

- (1) If $(\{a_{\alpha}\})_v \subseteq (\{b_{\beta}\})_v$, then $[\{a_{\alpha}U\}]_v \subseteq [\{b_{\beta}U\}]_v$.
- (2) $(I_s)^{-1} = (I^{-1})_s$; hence $(I_s)_v = (I_v)_s$.
- (3) $(I_s)_t = (I_t)_s$.
- (4) I is a t-ideal if and only if I_s is a t-ideal.
- (5) $(I_s)_r = I$, and I is a prime ideal if and only if I_s is a prime ideal.
- (6) $((I_1I_2)_s)_t = ((I_1)_s + (I_2)_s)_t$ for any $I_1, I_2 \in \mathbf{F}(D)$.
- (7) I is a t-invertible t-ideal if and only if I_s is a t-invertible t-ideal.
- Proof. (1) Let $x \in K^*$. Then $xU \in [\{b_{\beta}U\}]^{-1} \Rightarrow xb_{\beta}U = xU + b_{\beta}U \in \Gamma$ for all $b_{\beta} \Rightarrow xb_{\beta} \in D$ for all $b_{\beta} \Rightarrow x \in (\{b_{\beta}\})^{-1} \subseteq (\{a_{\alpha}\})^{-1}$ by assumption $\Rightarrow xa_{\alpha} \in D$ for all $a_{\alpha} \Rightarrow xU + a_{\alpha}U = xa_{\alpha}U \in \Gamma$ for all $a_{\alpha} \Rightarrow xU \in [\{a_{\alpha}U\}]^{-1}$. Hence $[\{b_{\beta}U\}]^{-1} \subseteq [\{a_{\alpha}U\}]^{-1}$, and thus $[\{a_{\alpha}U\}]_v \subseteq [\{b_{\beta}U\}]_v$.
- (2) Let $y \in K^*$. Then $yU \in (I_s)^{-1} \Leftrightarrow yaU = yU + aU \in \Gamma$ for all $0 \neq a \in I$, $\Leftrightarrow ya \in D$ for all $0 \neq a \in I$, $\Leftrightarrow y \in I^{-1}$, $\Leftrightarrow yU \in (I^{-1})_s$.
- (3) Let $y \in K^*$. Then $yU \in (I_s)_t \Leftrightarrow yU \in [\{a_iU\}]_v = ((\{a_i\})_v)_s$ for some finite set $\{a_iU\}\subseteq I_s$ (see (2) for the equality), $\Leftrightarrow y \in (\{a_i\})_v$ for some finite set $\{a_i\}\subseteq I$, $\Leftrightarrow y \in I_t$, $\Leftrightarrow yU \in (I_t)_s$.
- (4) If I is a t-ideal, then $(I_s)_t = (I_t)_s = I_s$ by (3). Conversely, assume that I_s is a t-ideal; so $I_s = (I_t)_s$ by (3). If $0 \neq x \in I_t$, then $xU \in I_s$, and hence xU = aU for some $0 \neq a \in I$ or $x \in aD \subseteq I$. Hence $I_t \subseteq I$, and thus $I_t = I$.
- (5) Let $x \in K^*$, and suppose that $x \in (I_s)_r$. Then $x = \sum a_i b_i$ for some $b_i \in D^*$ and $a_i \in K^*$ with $a_i U \in I_s$; so $x U \in [\{a_i U\}] \subseteq I_s$ or x U = a U for some $0 \neq a \in I$. Hence $x \in I$. Clearly, $I \subseteq (I_s)_r$, and thus $(I_s)_r = I$. Next, if $a \in D^*$, then $(I_s)_r = I$ implies " $a \in I \Leftrightarrow a U \in I_s$ ", and thus I is prime if and only if I_s is prime.
- (6) Let $0 \neq x \in I_1I_2$. Then $x = \sum a_ib_i$ for some $0 \neq a_i \in I_1$ and $0 \neq b_i \in I_2$; hence $x \in (\{a_ib_i\})_v$, and by (1) $xU \in [\{a_ib_iU\}]_v \subseteq ([\{a_iU\}]] + [\{b_iU\}])_v \subseteq ((I_1)_s + (I_2)_s)_t$. Hence $(I_1I_2)_s \subseteq ((I_1)_s + (I_2)_s)_t$, and thus $((I_1I_2)_s)_t \subseteq ((I_1)_s + (I_2)_s)_t$. Conversely, note that $(I_1)_s + (I_2)_s \subseteq (I_1I_2)_s$; so $((I_1)_s + (I_2)_s)_t \subseteq ((I_1I_2)_s)_t$. Thus $((I_1)_s + (I_2)_s)_t = ((I_1I_2)_s)_t$.
- (7) By (2), (3) and (6), we have $\Gamma = ((II^{-1})_t)_s = ((II^{-1})_s)_t = ((I_s) + (I^{-1})_s)_t = ((I_s) + (I_s)^{-1})_t$. Thus $(II^{-1})_t = D$ if and only if $((I_s) + (I_s)^{-1})_t = \Gamma$.

We next study the ideal J_r of D for a fractional ideal J of D^*/U .

PROPOSITION 4. Let U be a group of units of D and $\Gamma = D^*/U$ be the semigroup. Let J be a fractional ideal of Γ .

- (1) $(J_r)^{-1} = (J^{-1})_r$; hence $(J_r)_v = (J_v)_r$.
- (2) $(J_r)_t = (J_t)_r$.
- (3) If J is a t-ideal, then J_r is a t-ideal and $(J_r)_s = J$.
- (4) If J is t-invertible, then J_r is t-invertible.
- (5) If J is a t-ideal, then J is prime if and only if J_r is prime.
- Proof. (1) Let $x \in K^*$, and note that $xa \in D$ for all $a \in K^*$ with $aU \in J$ if and only if $xJ_r \subseteq D$. Hence $x \in (J_r)^{-1} \Rightarrow xJ_r \subseteq D \Rightarrow xU + J \subseteq \Gamma \Rightarrow xU \in J^{-1} \Rightarrow x \in (J^{-1})_r$. Conversely, if $x \in (J^{-1})_r$, then $x \in (a_1, \ldots, a_n)$ for some $a_i \in K^*$ with $a_iU \in J^{-1}$. Hence $xJ_r \subseteq (a_1, \ldots, a_n)J_r$, and since $a_iU + J \subseteq \Gamma$, we have $a_iJ_r \subseteq D$, and thus $xJ_r \subseteq D$ or $x \in (J_r)^{-1}$.
- (2) Let $x \in K^*$. Suppose $x \in (J_r)_t$. Then $x \in (a_1, \ldots, a_n)_v$ for some $0 \neq a_1, \ldots, a_n \in J_r$. Note that $a_i \in (b_1, \ldots, b_m)$ for some $b_i \in K^*$ with $b_iU \in J$; so replacing a_i with $\{b_j\}$, we may assume that $a_iU \in J$. Hence by Proposition 3(1), $xU \in [a_1U, \ldots, a_nU]_v \subseteq J_t$, and thus $x \in (J_t)_r$. Conversely, $x \in (J_t)_r \Rightarrow x \in (c_1, \ldots, c_k)$ for some $c_i \in K^*$ with $c_iU \in J_t$ $\Rightarrow xU \in [c_1U, \ldots, c_kU]_v \subseteq (J_t)_t = J_t$ by Proposition 3(1) $\Rightarrow x \in (J_t)_r$.
- (3) By (2), J_r is a t-ideal. Next, if $xU \in (J_r)_s$, then $x \in J_r$; hence $x \in (a_1, \ldots, a_n)$ for some $a_i \in K^*$ with $a_iU \in J$. Thus by Proposition 3(1), $xU \in [a_1U, \ldots, a_nU]_v \subseteq J_t = J$. Clearly, $J \subseteq (J_r)_s$, and thus $J = (J_r)_s$.
- (4) Clearly, $(J + J^{-1})_r \subseteq (J_r)(J_r)^{-1}$; so $(J + J^{-1})_r \subseteq (J_r)(J^{-1})_r$ by (1). Conversely, if $x \in (J_r)(J^{-1})_r$, then $x = \sum a_i b_i$ for some $a_i \in J_r$ and $b_i \in (J^{-1})_r$; so $x \in (\{a_i b_i\}) = [\{a_i b_i U\}]_r \subseteq (J + J^{-1})_r$. Hence $(J + J^{-1})_r = (J_r)(J^{-1})_r$, and thus $D = (\Gamma)_r = ((J + J^{-1})_t)_r = ((J_r)(J^{-1})_r)_t$ by (2).
- (5) By Proposition 3(4), J_r is a prime ideal if and only if $(J_r)_s$ is a prime ideal. Thus by (3), J_r is prime if and only if J is prime.

REMARK 5. Let U be a group of units of D, and let $\Gamma = D^*/U$ be the semigroup.

(1) Let a, b be nonzero nonunits of D such that (a, b) = D (for example, D has at least two maximal ideals). Let J = [aU, bU], then $J_r = D$ and $(J_r)_s = \Gamma$. Thus the (3) and (5) of Proposition 4 does not hold if J is

not a t-ideal. For Proposition 4(4), note that if J is t-invertible, then J_r is t-invertible, and hence $(J_r)_s$ is t-invertible by Proposition 3(7). Thus if J is a t-ideal, then J is t-invertible if and only if J_r is t-invertible.

(2) Let Div(D) (resp., $Div(D^*/U)$) be the semigroup of fractional t-ideals of D (resp., D^*/U) under $I_1 * I_2 = (I_1I_2)_t$ (resp., $J_1 * J_2 = (I_1 + J_2)_t$). Propositions 3 and 4 show that the map $\pi : Div(D) \to Div(D^*/U)$, given by $I \to I_s$, is a semigroup isomorphism. Also, Propositions 3(5) and 4(5) show that the restriction of π to t-Spec(D) is a bijection from t-Spec(D) into t-Spec (D^*/U) .

We next study the relation between Cl(D) and $Cl(D^*/U)$. Set $\Gamma = D^*/U$, and let $cl(I_1), cl(I_2) \in Cl(D)$. Note that if $cl(I_1) = cl(I_2)$, then $I_1 = xI_2$ for some $x \in K^*$; so $(I_1)_s = (xI_2)_s = xU + (I_2)_s$. Note also that $(I_1)_s$ and $(xI_2)_s$ are t-invertible t-ideals by Proposition 3(7), hence $cl((I_1)_s) = cl((I_2)_s)$. Thus the map $\varphi : Cl(D) \to Cl(\Gamma)$, given by $cl(I) \to cl(I_s)$, is well-defined. We next show $Cl(D) = Cl(D^*/U)$, which means that φ is a group isomorphism.

Corollary 6. $Cl(D) = Cl(D^*/U)$.

Proof. We first show that φ is a group homomorphism. Let $cl(I_1), cl(I_2) \in Cl(D)$, and note that $((I_1I_2)_t)_s = ((I_1I_2)_s)_t = ((I_1)_s + (I_2)_s)_t$ by Proposition 3(3) and (6). Hence $\varphi(cl((I_1I_2)_t)) = cl((I_1I_2)_t)_s = cl((I_1)_s) + cl((I_2)_s) = \varphi(cl((I_1)_s) + \varphi(cl((I_1)_s)).$

Next, if $I_s = aU + \Gamma$, then $I = (I_s)_r = (aU + \Gamma)_r = aD$ by Proposition 3(5). Since φ is a homomorphism, φ is injective. Finally, we show that φ is surjective, and hence φ is a group isomorphism. To do this, let $cl(J) \in \Gamma$, where J is a t-invertible t-ideal of Γ . Then J_r is a t-invertible t-ideal of D such that $(J_r)_s = J$ by Proposition 4(3) and (4). Hence $cl(J_r) \in Cl(D)$ such that $\varphi(cl(J_r)) = cl(J)$.

Let D be an integrally closed domain, and assume that D is not a valuation domain. Then $G = K^*/U(D)$ is totally ordered by Lemma 1(3) and [4, Corollary 3.4] but G(D), the group of divisibility of D, is not totally ordered. Thus the order of G(D) is different from that of G.

COROLLARY 7. Let $\Gamma = D^*/U$ be the semigroup.

- (1) D is a PvMD if and only if Γ is a PvMS.
- (2) D is a GCD-domain if and only if Γ is a GCD-semigroup.
- (3) D is a Mori domain if and only if Γ is a Mori semigroup.

- (4) (cf. [5, Theorem 23.4]) D is a Krull domain if and only if Γ is a Krull semigroup.
- (5) D is a factorial domain if and only if Γ is a factorial semigroup.
- Proof. (1) Suppose that D is a PvMD, and let J be a finite type t-ideal of Γ , i.e., $J = [a_1U, \ldots, a_nU]_v$ for some $a_iU \in \Gamma$. Then $J_r = (\{a_i\})_v$ by Proposition 4(1); hence J_r is t-ivertible and thus $J = (J_r)_s$ is t-invertible by Propositions 3(7) and 4(3). Thus Γ is a PvMS. Conversely, assume that Γ is a PvMS, and let $I = (b_1, \ldots, b_m)_v$ for $b_i \in D^*$. Then $I_s = [b_1U, \ldots, b_mU]_v$ by Proposition 3. Hence I_s is t-invertible, and thus $I = (I_s)_r$ is t-invertible by Proposition 3(4) and (7). Thus D is a PvMD.
- (2) This is an immediate consequence of (1) and Corollary 6 because a PvMD D (resp., PvMS Γ) is a GCD-domain (resp., GCD-semigroup) if and only if Cl(D) = 0 (resp., $Cl(\Gamma) = 0$).
- (3) This is an immediate consequence of Proposition 3(3) and (5) and Proposition 4(2) and (3).
- (4) This can be proved by the same argument as in the proof of (1) because each t-ideal of Krull domains and Krull semigroups is of finite type.
- (5) Note that a Krull domain D (resp., Krull semigroup Γ) is factorial if and only if Cl(D) = 0 (resp., $Cl(\Gamma) = 0$). Thus the result is an immediate consequence of (4) and Corollary 6.

Let Γ be a commutative cancellative semigroup, and let $D[\Gamma]$ be the semigroup ring of Γ over D. It is known that Γ is torsion-free if and only if $D[\Gamma]$ is an integral domain [4, Theorem 8.1] and that $D[\Gamma]$ is integrally closed if and only if D and Γ are integrally closed [4, Corollary 12.11].

LEMMA 8. Let $\Gamma = D^*/U(D)$ be the semigroup. If D is integrally closed, then Γ is torsion-free, and hence $D[\Gamma]$ is an integrally closed domain with $Cl(D[\Gamma]) = Cl(D) \oplus Cl(D)$.

Proof. For $x \in K^*$, assume that $x^nU(D) = U(D)$ for an integer $n \ge 1$. Then $x^n \in U(D) \subseteq D$, and since D is integrally closed, $x \in D$. Also, $xx^{n-1} = x^n \in U(D)$ implies $x \in U(D)$. Hence xU(D) = U(D). Thus Γ is torsion-free.

Next, it is clear that Γ is integrally closed; hence $D[\Gamma]$ is integrally closed and $Cl(D[\Gamma]) = Cl(D) \oplus Cl(D)$ by Corollary 6 and [2, Corollary 2.11].

Corollary 9. The following statements are equivalent for $\Gamma = D^*/U(D)$.

- (1) D is a PvMD (resp., GCD-domain, Krull domain, factorial domain).
- (2) $D[\Gamma]$ is a PvMD (resp., GCD-domain, Krull domain, factorial domain).
- (3) $K[\Gamma]$ is a PvMD (resp., GCD-domain, Krull domain, factorial domain).
- (4) D[G] is a PvMD (resp., GCD-domain, Krull domain, factorial domain).

Proof. The PvMD and Krull domain cases.

 $(1) \Leftrightarrow (2)$ and $(1) \Leftrightarrow (3)$ These follow directly from Corollary 7 and [1, Proposition 6.5] (resp., [4, Theorem 15.6]). $(2) \Rightarrow (4)$ This follows because $D[G] = D[\Gamma]_N$, where $N = \{X^{\alpha} | \alpha \in \Gamma\}$. $(4) \Rightarrow (1)$ This follows because $D[G] \cap K = D$.

The GCD-domain and factorial domains cases are immediate consequences of Lemma 8 and the PvMD and Krull domain cases because D is a GCD-domain (resp., factorial domain) if and only if D is a PvMD (resp., Krull domain) and Cl(D) = 0.

References

- [1] D. D. Anderson and D. F. Anderson, Divisorial ideals and invertible ideals in a graded integral domain, J. Algebra 76 (1982), 549-569.
- [2] S. El Baghdadi, L. Izelgue and S. Kabbaj, On the class group of a graded domain, J. Pure Appl. Algebra 171 (2002), 171-184.
- [3] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- [4] R. Gilmer, Commutative Semigroup Rings, The Univ. of Chicago, Chicago, 1984.
- [5] F. Halter-Koch, *Ideal Systems*, Marcel Dekker, 1998.

Department of Mathematics, University of Incheon, Incheon 402-749, Korea

E-mail: whan@incheon.ac.kr