• Title/Summary/Keyword: integral operators

Search Result 217, Processing Time 0.027 seconds

A simplified matrix stiffness method for analysis of composite and prestressed beams

  • Deretic-Stojanovic, Biljana;Kostic, Svetlana M.
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.53-63
    • /
    • 2017
  • The paper presents the simplified matrix stiffness method for analysis of composite and prestressed beams. The method is based on the previously developed "exact" analysis method that uses the mathematical theory of linear integral operators to derive all relations without any mathematical simplifications besides inevitable idealizations related to the material rheological properties. However, the method is limited since the closed-form solution can be found only for specific forms of the concrete creep function. In this paper, the authors proposed the simplified analysis method by introducing the assumption that the unknown deformations change linearly with the concrete creep function. Adopting this assumption, the nonhomogeneous integral system of equations of the "exact" method simplifies to the system of algebraic equations that can be easily solved. Therefore, the proposed method is more suitable for practical applications. Its high level of accuracy in comparison to the "exact" method is preserved, which is illustrated on the numerical example. Also, it is more accurate than the well-known EM method.

WEIGHTED VECTOR-VALUED BOUNDS FOR A CLASS OF MULTILINEAR SINGULAR INTEGRAL OPERATORS AND APPLICATIONS

  • Chen, Jiecheng;Hu, Guoen
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.671-694
    • /
    • 2018
  • In this paper, we investigate the weighted vector-valued bounds for a class of multilinear singular integral operators, and its commutators, from $L^{p_1}(l^{q_1};\;{\mathbb{R}}^n,\;w_1){\times}{\cdots}{\times}L^{p_m}(l^{q_m};\;{\mathbb{R}}^n,\;w_m)$ to $L^p(l^q;\;{\mathbb{R}}^n,\;{\nu}_{\vec{w}})$, with $p_1,{\cdots},p_m$, $q_1,{\cdots},q_m{\in}(1,\;{\infty})$, $1/p=1/p_1+{\cdots}+1/p_m$, $1/q=1/q_1+{\cdots}+1/q_m$ and ${\vec{w}}=(w_1,{\cdots},w_m)$ a multiple $A_{\vec{P}}$ weights. Our argument also leads to the weighted weak type endpoint estimates for the commutators. As applications, we obtain some new weighted estimates for the $Calder{\acute{o}}n$ commutator.

DECOMPOSITION FORMULAS AND INTEGRAL REPRESENTATIONS FOR SOME EXTON HYPERGEOMETRIC FUNCTIONS

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.745-758
    • /
    • 2011
  • Generalizing the Burchnall-Chaundy operator method, the authors are aiming at presenting certain decomposition formulas for the chosen six Exton functions expressed in terms of Appell's functions $F_3$ and $F_4$, Horn's functions $H_3$ and $H_4$, and Gauss's hypergeometric function F. We also give some integral representations for the Exton functions $X_i$ (i = 6, 8, 14) each of whose kernels contains the Horn's function $H_4$.

SOME INTEGRAL TRANSFORMS AND FRACTIONAL INTEGRAL FORMULAS FOR THE EXTENDED HYPERGEOMETRIC FUNCTIONS

  • Agarwal, Praveen;Choi, Junesang;Kachhia, Krunal B.;Prajapati, Jyotindra C.;Zhou, Hui
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.591-601
    • /
    • 2016
  • Integral transforms and fractional integral formulas involving well-known special functions are interesting in themselves and play important roles in their diverse applications. A large number of integral transforms and fractional integral formulas have been established by many authors. In this paper, we aim at establishing some (presumably) new integral transforms and fractional integral formulas for the generalized hypergeometric type function which has recently been introduced by Luo et al. [9]. Some interesting special cases of our main results are also considered.

A GRÜSS TYPE INTEGRAL INEQUALITY ASSOCIATED WITH GAUSS HYPERGEOMETRIC FUNCTION FRACTIONAL INTEGRAL OPERATOR

  • Choi, Junesang;Purohit, Sunil Dutt
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.81-92
    • /
    • 2015
  • In this paper, we aim at establishing a generalized fractional integral version of Gr$\ddot{u}$ss type integral inequality by making use of the Gauss hypergeometric function fractional integral operator. Our main result, being of a very general character, is illustrated to specialize to yield numerous interesting fractional integral inequalities including some known results.

DIFFERENTIAL INEQUALITIES ASSOCIATED WITH CARATHÉODORY FUNCTIONS

  • In Hwa, Kim;Nak Eun, Cho
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.773-784
    • /
    • 2022
  • The purpose of the present paper is to estimate some real parts for certain analytic functions with some applications in connection with certain integral operators and geometric properties. Also we extend some known results as special cases of main results presented here.

A GENERALIZATION OF THE KINETIC EQUATION USING THE PRABHAKAR-TYPE OPERATORS

  • Dorrego, Gustavo Abel;Kumar, Dinesh
    • Honam Mathematical Journal
    • /
    • v.39 no.3
    • /
    • pp.401-416
    • /
    • 2017
  • Fractional kinetic equations are investigated in order to describe the various phenomena governed by anomalous reaction in dynamical systems with chaotic motion. Many authors have provided solutions of various families of fractional kinetic equations involving special functions. Here, in this paper, we aim at presenting solutions of certain general families of fractional kinetic equations using Prabhakar-type operators. The idea of present paper is motivated by Tomovski et al. [21].

APPROXIMATION BY GENUINE LUPAŞ-BETA-STANCU OPERATORS

  • KUMAR, ALOK;VANDANA, VANDANA
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.1_2
    • /
    • pp.15-28
    • /
    • 2018
  • In this paper, we introduce a Stancu type generalization of genuine LupaŞ-Beta operators of integral type. We establish some moment estimates and the direct results in terms of classical modulus of continuity, Voronovskaja-type asymptotic theorem, weighted approximation, rate of convergence and pointwise estimates using the Lipschitz type maximal function. Lastly, we propose a king type modification of these operators to obtain better estimates.

ON APPROXIMATION PROPERTIES OF BALAZS-SZABADOS OPERATORS AND THEIR KANTOROVICH EXTENSION

  • Agratini, Octavian
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.531-542
    • /
    • 2002
  • In this paper we deal with a sequence of positive linear operators ${{R_n}}^{[$\beta$]}$ approximating functions on the unbounded interval [0, $\infty$] which were firstly used by K. balazs and J. Szabados. We give pointwise estimates in the framework of polynomial weighted function spaces. Also we establish a Voronovskaja type theorem in the same weighted spaces for ${{K_n}}^{[$\beta$]}$ operators, representing the integral generalization in Kantorovich sense of the ${{R_n}}^{[$\beta$]}$.