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Abstract. Integral transforms and fractional integral formulas involv-
ing well-known special functions are interesting in themselves and play
important roles in their diverse applications. A large number of inte-
gral transforms and fractional integral formulas have been established by
many authors. In this paper, we aim at establishing some (presumably)
new integral transforms and fractional integral formulas for the general-
ized hypergeometric type function which has recently been introduced by
Luo et al. [9]. Some interesting special cases of our main results are also
considered.

1. Introduction and preliminaries

The theory of special functions has been one of the most rapidly growing
research subjects in mathematical analysis. A lot of special functions in math-
ematical physics and engineering, such as Jacobi and Laguerre polynomials,
can be expressed in terms of the generalized Gauss hypergeometric functions
or confluent hypergeometric functions (see, e.g., [17]). Certain extensions of
the hypergeometric functions and several other familiar special functions have
been presented and investigated (see, e.g., [4], [5], [8], [12] and for a very recent
work, see also [2], [16]). Very recently, Luo et al. [9] introduced the following
extended generalized hypergeometric type function and investigated its various
properties. The extended generalized hypergeometric function is defined, for
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z ∈ C, by

(1.1)
pF

(α,β;κ,µ)
q

[
a1, . . . , ap
b1, . . . , bq

; z; γ

]
:=

∞∑

n=0

Θ(n/p, q)
zn

n!

(min {ℜ(κ), ℜ(µ)} ≥ 0, min{ℜ(α), ℜ(β), ℜ(γ)} > 0)

whose coefficient is given by

Θ (n|p, q) =





(a1)n

q∏

j=1

B
(α,β;κ,µ)
γ (aj+1 + n, bj − aj+1)

B (aj+1, bj − aj+1)

(p = q + 1; ℜ (bj) > ℜ (aj+1) > 0; |z| < 1) ,
q∏

j=1

B
(α,β;κ,µ)
γ (aj + n, bj − aj)

B (aj , bj − aj)

(p = q;ℜ (bj) > ℜ (aj) > 0) ,

r∏

i=1

1

(bi)n

p∏

j=1

B
(α,β;κ,µ)
γ (aj + n, br + j − aj)

B (aj , br + j − aj)

(r = q − p > 0; ℜ (br+j) > ℜ (aj) > 0) .

Here the generalized beta function B
(α,β;k,µ)
γ (x, y) is defined by

(1.2)
B(α,β;κ,µ)

γ (x, y) :=

1∫

0

tx−1(1 − t)y−1
1F1

(
α;β;−

γ

tκ(1− t)µ

)
dt

(min{ℜ(x), ℜ(y), ℜ(α), ℜ(β), ℜ(γ), ℜ(κ), ℜ(µ)} > 0) .

Remark 1. The special case of (1.1) when p = 2 and q = 1 would reduce
immediately to the extended Gauss hypergeometric type function defined by

(1.3)
2F

(α,β;κ,µ)
1

[
a, b

c
; z; γ

]
=

∞∑

n=0

(a)n
B
(α,β;κ,µ)
γ (b+ n, c− b)

B (b, c− b)

zn

n!
(|z| < 1)

(min {κ, µ} ≥ 0; min{ℜ (α) ,ℜ (β) , ℜ(γ)} > 0; ℜ (c) > ℜ (b) > 0) .

Setting γ = 0 in (1.1) and (1.2) is easily seen to yield the familiar generalized
hypergeometric function pFq[z] and the classical beta function B(x, y) function,
respectively.

The present investigation requires the concept of Hadamard product which
can be used to decompose a newly-emerged function into two known func-
tions. Let f (z) :=

∑
∞

n=0 anz
n and g (z) :=

∑
∞

n=0 bnz
n be two power series

whose radii of convergence are given by Rf and Rg, respectively. Then their
Hadamard product (see [13]) is the power series defined by

(f ∗ g) (z) :=
∞∑

n=0

anbnz
n.
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The radius of convergence R of the Hadamard product series (f ∗ g) (z) satisfies
Rf ·Rg ≤ R. If, in particular, one of the power series defines an entire function,
then the Hadamard product series defines an entire function, too.

Consider the function sF
(α,β;κ,µ)
s+r [z; r] one of whose Hadamard products can,

for example, be given as follows:

sF
(α,β;κ,µ)
s+r

[
x1, . . . , xs

y1, . . . , ys+r
; z; γ

]

= 1Fr

[
1;

y1, . . . , yr;
z

]
∗ sF

(α,β;κ,µ)
s

[
x1, . . . , xs

y1+r, . . . , ys+r
; z; γ

]
(|z| < ∞) ,

where 1Fr is a special case of the generalized hypergeometric functions pFq

(see, e.g., [17, p. 71]).

In diverse areas in engineering and mathematical physics, integral transforms
and fractional integral operators play an important role in the view point of
application. A remarkably large number of integral transforms and fractional
integral formulas involving various special functions have been investigated
by many authors. Very recently, certain interesting integral transforms and

fractional integral formulas involving the F
(α,β;m)
p (·) were presented (see [6]).

Here, we also aim to establish certain (presumably) new integral transforms
and fractional integral formulas involving the generalized Gauss hypergeometric

type functions 2F
(α,β;κ,µ)
1 (z; γ) given by Luo et al. [9].

2. Integral transforms and generalized Gauss hypergeometric

functions

We present three transforms, which exhibit the connection between the Eu-
ler, Varma, Laplace and Whittaker integral transforms and generalized Gauss

hypergeometric type functions 2F
(α,β;κ,µ)
1 [ l+m,b

c ; yz; γ] defined by (1.3). To do
this, we begin by recalling the following beta transform of a function f(z) (see
[14]):

(2.1) B{f(z) : a, b} =

∫ 1

0

za−1(1 − z)b−1f(z) dz.

Theorem 2. Let min{ℜ(l), ℜ(m), ℜ(α), ℜ(β), ℜ(γ), ℜ(κ), ℜ(µ)} > 0 and

ℜ(c) > ℜ(b) > 0. Then the following beta transform formula holds true:

(2.2)

B

{
2F

(α,β;κ,µ)
1

[
l +m, b

c
; yz; γ

]
: l,m

}

= B(l,m) 2F
(α,β;κ,µ)
1

[
l, b
c

; y; γ

]
(|y| < 1),

where B is the beta transform in (2.1) and the beta transform of 2F
(α,β;κ,µ)
1 (·)

is assumed to exist.
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Proof. Let L be the left-hand side of (2.2). Applying the beta transform (2.1)
to the function (1.3), we get

(2.3) L =

∫ 1

0

zl−1(1− z)m−1
∞∑

n=0

(l +m)n
B

(α,β;κ,µ)
γ (b+ n, c− b)

B(b, c− b)

(yz)n

n!
dz.

By changing the order of integration and summation which may be verified
under the conditions, and using the classical beta function B(α, β) (see, e.g.,
[17, p. 8]), we obtain

(2.4) L =
∞∑

n=0

(l +m)n
B

(α,β;κ,µ)
γ (b+ n, c− b)

B(b, c− b)

Γ(l + n)Γ(m)

Γ(l +m+ n)

yn

n!
,

which, in view of (1.3), is seen to lead to the right-hand side of (2.2). �

The Varma transform of a function f(z) is defined by the following integral
equation (see Mathai et al. [11, p. 55]):

(2.5) V (f, k,m; s)=

∫
∞

0

(sz)m−
1

2 exp

(
−
1

2
sz

)
Wk,m(sz)f(z) dz (ℜ(s) > 0),

where Wk,m is the Whittaker function defined by (Mathai et al. [11, p. 55])

(2.6) Wk,m(z) =
∑

m,−m

Γ(−2m)

Γ(12 − k −m)
Mk,m(z)

where the summation symbol indicates that the expression following it, a sim-
ilar expression with m replaced by −m is to be added and

(2.7) Mk,m(z) = zm+ 1

2 e−
z

2 1F1

(
1

2
− k +m; 2m+ 1; z

)
.

The following formula (see Mathai et al. [11, p. 56]) will be used:

(2.8)

∫
∞

0

zρ−1 exp

(
−
1

2
sz

)
Wk,ν(sz) dz = s−ρ

Γ(ρ+ ν + 1
2 )Γ(ρ− ν + 1

2 )

Γ(1− k + ρ)

(ℜ(s) > 0, ℜ(ρ± ν) > −1/2) .

Theorem 3. Let y ≥ 0, ℜ(s) ≥ 0, min{ℜ(α), ℜ(β), ℜ(γ), ℜ(κ), ℜ(µ)} > 0,
ℜ(c) > ℜ(b) > 0, and |y

s
| < 1. Then the following Varma transform formula

holds true:

(2.9)

V

{
zl−1

2F
(α,β;κ,µ)
1

[
a, b
c

; yz; γ

]}
=

1

sl
Γ(l)Γ(2m+ l)

Γ(m+ l − k + 1
2 )

× 2F
(α,β;κ,µ)
1

[
a, b
c

;
y

s
; γ

]
∗2 F1

[
2m+ l, l;

m+ l − k + 1
2 ;

y

s

]
,

where V is the Varma transform in (2.5) and both sides of (2.9) are assumed

to exist.
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Proof. Let L be the left-hand side of (2.9). Then, a similar argument as in the
proof of Theorem 2 is seen to give the following result:

(2.10) L =
1

sl

∞∑

n=0

(a)n
B

(α,β;κ,µ)
γ (b+ n, c− b)

B(b, c− b)

Γ(l + n)Γ(2m+ l+ n)

Γ(m+ l − k + 1
2 + n)

(y
s
)n

n!
,

which, upon using Hadamard product series and (1.3), leads to the right-hand
side of (2.9). �

It is interesting to observe that, for k = −m+ 1
2 in (2.9), the Varma transform

defined by (2.5) reduces to the well-known Laplace transform of a function f(z)
(see, e.g., [14]):

(2.11) L{f(z) : s} =

∫
∞

0

e−szf(z) dz.

In fact, we have an interesting Laplace transform asserted by the following
corollary.

Corollary 1. Let y ≥ 0, ℜ(s) ≥ 0, min{ℜ(α), ℜ(β), ℜ(γ), ℜ(κ), ℜ(µ)} > 0,
ℜ(c) > ℜ(b) > 0, and |y

s
| < 1. Then the following Laplace transform formula

holds true:

(2.12)

L

{
zl−1

2F
(α,β;κ,µ)
1

[
a, b
c

; yz; γ

]}

=
Γ(l)

sl
2F

(α,β;κ,µ)
1

[
a, b
c

;
y

s
; γ

]
∗ 1F0

[
l;
−;

y

s

]
,

where L is the Laplace transform in (2.11) and both sides of (2.12) are assumed

to exist.

Theorem 4. Suppose that w ≥ 0, ℜ(γ) ≥ 0, min{ℜ(α), ℜ(β), ℜ(k), ℜ(µ)} >
0, ℜ(c) > ℜ(b) > 0, and ρ, δ ∈ C are parameters. Then the following Whittaker

transform formula holds true:

(2.13)

∫
∞

0

tρ−1e
−δt

2 Wλ,µ(δt) 2F
(α,β;κ,µ)
1

[
a, b
c

;wt; γ

]
dt

= δ−ρ
Γ
(
1
2 + µ+ ρ

)
Γ
(
1
2 − µ+ ρ

)

Γ
(
1
2 − λ+ ρ

)

×2 F
(α,β;κ,µ)
1

[
a, b
c

;
w

δ
; γ

]
∗ 2F1

[
1
2 + µ+ ρ, 12 − µ+ ρ;

1
2 − λ+ ρ;

w

δ

]
,

provided that the integral transform converges.
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Proof. Let L be the left-hand side of (2.13). Then, by applying (1.3) and setting
δt = ν, and changing the order of integration and summation, we obtain

L = δ−ρ

∞∑

n=0

(a)n
B

(α,β;κ,µ)
γ (b+ n, c− b)

B(b, c− b)

(w)n

δnn!
dν

×

∫
∞

0

νρ+n−1e
−ν

2 Wλ,µ(ν)dν.

(2.14)

Here we use the following integral formula involving the Whittaker function
(see Mathai et al. [11, p. 56])

(2.15)

∫
∞

0

tν−1e−
t

2Wλ,µ(t) dt =
Γ
(
1
2 + µ+ ν

)
Γ
(
1
2 − µ+ ν

)

Γ
(
1
2 − λ+ ν

)

(ℜ(ν ± µ) > −1/2) .

Then, after a little simplification, we get

L = δ−ρ

∞∑

n=0

(a)n
B

(α,β;κ,µ)
γ (b + n, c− b)

B(b, c− b)

(w)n

δnn!

×
Γ
(
1
2 + µ+ ρ+ n

)
Γ
(
1
2 − µ+ ρ+ n

)

Γ
(
1
2 − λ+ ρ+ n

) ,

(2.16)

which, upon using Hadamard product series and (1.3), leads to the right-hand
side of (2.13). �

It is noted in passing that the case κ = µ = m in Theorems 2 and 4, and
Corollary 1 is seen to yield the known results in [6].

3. Fractional calculus of the generalized Gauss hypergeometric

functions

Recently, fractional integral operators involving the various special functions
have been actively investigated (see, e.g., [1], [3], [7] and [15]). Here we establish
some fractional integral formulas for the generalized Gauss hypergeometric type

functions F
(α,β;k,µ)
p (a, b; c; z). To do this, we recall the following pair of Saigo

hypergeometric fractional integral operators (see Mathai et al. [11, p. 104]):
For ℜ(µ) > 0,

(3.1) (Iµ,ν,η0,x f(t))(x) =
x−µ−ν

Γ(µ)

∫ x

0

(x− t)µ−1
2F1

(
µ+ ν,−η;µ; 1−

t

x

)
f(t) dt

and

(3.2)

(Jµ,ν,η
x,∞ f(t))(x)

=
1

Γ(µ)

∫
∞

x

(t− x)µ−1t−µ−ν
2F1

(
µ+ ν,−η;µ; 1−

x

t

)
f(t) dt,

where the function f(t) is so constrained that the defining integrals in (3.1)
and (3.2) exist.
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The operator Iµ,ν,η0,x (·) contains both the Riemann-Liouville Rµ
0,x(·) and the

Erdélyi-Kober Eµ,η
0,x (·) fractional integral operators by means of the following

relationships:

(3.3) (Rµ
0,xf(t))(x) = (Iµ,−µ,η

0,x f(t))(x) =
1

Γ(µ)

∫ x

0

(x − t)µ−1f(t) dt

and

(3.4) (Eµ,η
0,x f(t))(x) = (Iµ,0,η0,x f(t))(x) =

x−µ−η

Γ(µ)

∫ x

0

(x − t)µ−1tηf(t) dt.

It is noted that the operator (3.2) unifies the Weyl type and the Erdélyi-Kober
fractional operators as follows:

(3.5) (Wµ
x,∞f(t))(x) = (Jµ,−µ,η

x,∞ f(t))(x) =
1

Γ(µ)

∫
∞

x

(t− x)µ−1f(t) dt

and

(3.6) (Kµ,η
x,∞f(t))(x) = (Jµ,0,η

x,∞ f(t))(x) =
xη

Γ(µ)

∫
∞

x

(t− x)µ−1t−µ−ηf(t) dt.

We also use the following image formulas which are easy consequences of the
operators (3.1) and (3.2) (see Mathai et al. [11, p. 107]):

(3.7)
(Iµ,ν,η0,x tλ−1)(x) =

Γ(λ)Γ(λ − ν + η)

Γ(λ− ν)Γ(λ+ µ+ η)
xλ−ν−1

(ℜ(λ) > 0, ℜ(λ− ν + η) > 0)

and

(3.8)
(Jµ,ν,η

x,∞ tλ−1)(x) =
Γ(ν − λ+ 1)Γ(η − λ+ 1)

Γ(1− λ)Γ(ν + µ− λ+ η + 1)
xλ−ν−1

(ℜ(ν − λ+ 1) > 0, ℜ(η − λ+ 1) > 0).

The Saigo fractional integrations of the generalized Gauss hypergeometric

type functions F
(α,β;k,µ)
p (a, b; c; z) are given in Theorems 5 and 6.

Theorem 5. Let x > 0, min {ℜ(γ),ℜ(µ),ℜ(ρ)} > 0 and ℜ(ρ) > max{0,ℜ(ν−
η)}. Then the following fractional integral formula holds true:

(3.9)

(
Iµ,ν,η0,x

[
tρ−1

2F
(α,β;κ,µ)
1

[
a, b
c

; et; γ

]])
(x)

= xρ−ν−1 Γ(ρ)Γ(ρ− ν + η)

Γ(ρ+ µ+ ν)Γ(ρ− ν)

× 2F
(α,β;κ,µ)
1

[
a, b
c

; ex; γ

]
∗ 2F2

[
ρ, ρ− ν + η;

ρ− ν, ρ+ µ+ η;
ex

]
.
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Proof. Let L be the left-hand side of (3.9). Then, using (1.3) and changing the
order of integration and summation, which is valid under the given conditions,
we have

(3.10) L =
∞∑

n=0

(a)n
B

(α,β;κ,µ)
γ (b+ n, c− b)

B(b, c− b)

(e)n

n!

(
Iµ,ν,η0,x {tρ+n−1}

)
(x).

Here, making use of the result (3.7), we obtain

L = xρ−ν−1
∞∑

n=0

(a)n
B

(α,β;κ,µ)
γ (b + n, c− b)

B(b, c− b)

×
Γ(ρ+ n)Γ(ρ− ν + η + n)

Γ(ρ− ν + n)Γ(ρ+ µ+ η + n)

(ex)n

n!
,

(3.11)

which, in view of Hadamard product series and (1.3), gives the right-hand side
of (3.9). �

Theorem 6. Let x > 0, min {ℜ(γ),ℜ(µ),ℜ(ρ)} > 0 and ℜ(ρ) < 1+min{ℜ(η),
ℜ(ν)}. Then the following fractional integral formula holds true:

(
Jµ,ν,η
x,∞

[
tρ−1

2F
(α,β;κ,µ)
1

[
a, b
c

;
e

t
; γ

]])
(x)

= xρ−ν−1 Γ(1− ρ+ ν)Γ(1− ρ+ η)

Γ(1 − ρ)Γ(1− ρ− η + ν + µ)

× 2F
(α,β;κ,µ)
1

[
a, b
c

;
e

x
; γ

]
∗ 2F2

[
1− ρ+ ν, 1− ρ+ η;

1− ρ, 1− ρ+ µ+ ν − η;

e

x

]
.

(3.12)

Proof. Similarly as in the proof of Theorem 5, taking the operator (3.2) and
the result (3.8) into account will establish the result (3.12). So the details of
proof are omitted. �

Setting ν = 0 in Theorems 5 and 6 yields certain interesting results asserted
by the following corollaries.

Corollary 2. Let x > 0, min {ℜ(γ),ℜ(µ),ℜ(ρ)} > 0 and ℜ(ρ) > ℜ(−η).
Then the right-side Erdélyi-Kober fractional integrals of the generalized Gauss

hypergeometric type functions are given as follows:

(
Eµ,η

0,x

[
tρ−1

2F
(α,β;κ,µ)
1

[
a, b
c

; et; γ

]])
(x)

= xρ−1 Γ(ρ+ η)

Γ(ρ+ µ)
2F

(α,β;κ,µ)
1

[
a, b
c

; ex; γ

]
∗ 1F1

[
ρ+ η;

ρ+ µ+ η;
ex

]
.

(3.13)
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Corollary 3. Let x > 0, min {ℜ(γ),ℜ(µ),ℜ(ρ)} > 0 and ℜ(ρ) < 1 + ℜ(η).
The following identity holds true:

(
Kµ,η

x,∞

[
tρ−1

2F
(α,β;κ,µ)
1

[
a, b
c

;
e

t
; γ

]])
(x)

= xρ−1 Γ(1 − ρ+ η)

Γ(1− ρ− η + µ)

× 2F
(α,β;κ,µ)
1

[
a, b
c

;
e

x
; γ

]
∗ 1F1

[
1− ρ+ η;

1− ρ+ µ− η;

e

x

]
.

(3.14)

Further, replacing ν by −µ in Theorems 5 and 6 and making use of the
relations (3.3) and (3.5) gives the other Riemann-Liouville and Weyl fractional
integrals of the generalized Gauss hypergeometric type function in (1.3) given
by the following corollaries.

Corollary 4. Let x > 0 and min {ℜ(γ),ℜ(µ),ℜ(ρ)} > 0. Then the following

formula holds true:
(
Rµ

0,x

[
tρ−1

2F
(α,β;κ,µ)
1

[
a, b
c

; et; γ

]])
(x)

= xρ+µ−1Γ(ρ+ µ+ η)

Γ(ρ+ µ) 2

F
(α,β;κ,µ)
1

[
a, b
c

; ex; γ

]
∗ 1F1

[
ρ;

ρ+ µ;
ex

]
.

(3.15)

Corollary 5. Let x > 0 and min {ℜ(γ),ℜ(µ),ℜ(ρ)} > 0. Then the following

formula holds true:
(
Wµ

x,∞

[
tρ−1

2F
(α,β;κ,µ)
1

[
a, b
c

;
e

t
; γ

]])
(x)

= xρ+µ−1 Γ(1− ρ− µ)

Γ(1 − ρ)

Γ(1− ρ+ η)

Γ(1− ρ− η)

× 2F
(α,β;κ,µ)
1

[
a, b
c

;
e

x
; γ

]
∗ 2F2

[
1− ρ− µ, 1− ρ+ η;

1− ρ, 1− ρ− η;

e

x

]
.

(3.16)

Concluding remarks

The results presented here are general enough to be suitably specialized
to yield a variety of integral transforms and fractional integral formulas for
each of the families of the generalized Gauss type hypergeometric functions

F
(α,β;µ)
p (a, b; c; z), F

(α,β)
p (a, b; c; z) and Fp(a, b; c; z), which have been investi-

gated by many authors (see, e.g., [4, 5, 8, 10, 13]), and other special functions
which are expressible in terms of the Gauss hypergeometric function.

Acknowledgements. The authors should express their deep gratitude for the
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