DOI QR코드

DOI QR Code

DIFFERENTIAL INEQUALITIES ASSOCIATED WITH CARATHÉODORY FUNCTIONS

  • In Hwa, Kim (Department of Economics and International Business, Sam Houston State University) ;
  • Nak Eun, Cho (Department of Applied Mathematics, Pukyong National University)
  • Received : 2021.12.07
  • Accepted : 2022.07.25
  • Published : 2022.12.06

Abstract

The purpose of the present paper is to estimate some real parts for certain analytic functions with some applications in connection with certain integral operators and geometric properties. Also we extend some known results as special cases of main results presented here.

Keywords

Acknowledgement

The authors would like to express their gratitude to the referees for many valuable suggestions regarding a previous version of this paper. The second author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2019R1I1A3A01050861).

References

  1. E. Bazilevic, On a case of integrability in guadratures of Lowner-Kwfurew equations, Mat. Sb., 37(79) (1955), 471-476.
  2. S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446. https://doi.org/10.2307/1995025
  3. C. Caratheodory, Uber den variabilitatsbereich der coeffizienten von potenzreihen, die gegebene werte nicht annehmen, Math. Ann. 64(1) (1907), 95-115. https://doi.org/10.1007/BF01449883
  4. C. Caratheodory, Uber den variabilitatsbereich der fourier'schen konstanten von positiven harmonischen funktionen, Rend. Circ. Mat. Palermo, 32 (1911), 193-217. https://doi.org/10.1007/BF03014795
  5. I.H. Kim and N.E. Cho, Sufficient conditions for Caratheodory functions, Comput. Math. Appl., 59 (2010), 2067-2073. https://doi.org/10.1016/j.camwa.2009.12.012
  6. V. Kumar and S.L. Shukla, On p-valeut starlike functions with referenceto the Bernardi integral operator, Bull. Austral. Math. Soc., 30 (1984), 37-43. https://doi.org/10.1017/S0004972700001696
  7. O.S. Kwon and Y.J. Sim, Sufficient conditions for Caratheodory functions and applications to univalent functions, Math. Slovaca, 69(5) (2019), 1065-1076. https://doi.org/10.1515/ms-2017-0290
  8. R.J. Libera, some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755-758. https://doi.org/10.1090/S0002-9939-1965-0178131-2
  9. A.E. Livingstin, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1966), 352-357. https://doi.org/10.1090/S0002-9939-1966-0188423-X
  10. T.H. MacGrGregor, A subordination for convex functions of order α, J. London Math. Soc., 9(2) (1975), 530-536. https://doi.org/10.1112/jlms/s2-9.4.530
  11. S.S. Miller and P.T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 282-305.
  12. M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser A, 69(7) (1993), 234-237. https://doi.org/10.3792/pjaa.69.234
  13. M. Nunokawa, On a certain of starlikeness, Math. Japonica, 44 (1996), 281-284.
  14. M. Nunokawa, O.S. Kwon, Y.J. Sim and N.E. Cho, Sufficient conditions for Caratheodory functions, Filomat, 32(3) (2018), 1097-1106. https://doi.org/10.2298/FIL1803097N
  15. M. Obradovic and S. Owa, A criterion for starlikeness, Math. Nachr., 140(1989), 97-102. https://doi.org/10.1002/mana.19891400109
  16. S. Owa and M. Obradovic, Certain subclasses of Bazilevic functions of type α, Int. J. Math. Sci., 9 (1986), 347-359. https://doi.org/10.1155/S0161171286000431
  17. K. Sakaguch, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 72-75. https://doi.org/10.2969/jmsj/01110072
  18. Y.J. Sim, O.S. Kwon, N.E. Cho and H.M. Srivastava, Some sets of sufficient conditions for Caratheodory functions. J. Comput. Anal. Appl., 21(7) (2016), 1243-1254.
  19. R. Singh, On Bazilevc functions, Proc. Amer. Math. Soc., 38 (1973), 261-271.
  20. K. Vijaya, G. Murugusundaramoorthy and N.E. Cho, Majorization problems for uniformly starlike functions based on Ruscheweyh q-differential operator related with exponential function, Nonlinear Funct. Anal. Appl., 26(1) (2021), 71-81. doi.org/10.22771/nfaa.2021.26.01.05
  21. L.M. Wang, The tilted Caratheodory class and its applications, J. Kor. Math. Soc., 49(4) (2012), 671-686. doi:10.4134/JKMS.2012.49.4.671