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SOME FIXED POINT THEOREMS FOR WEAKLY PICARD

OPERATORS IN COMPLETE METRIC SPACES AND

APPLICATIONS

Doan Trong Hieu and Bui The Hung

Abstract. In this paper, we prove new fixed point theorems for single-
valued and multi-valued weakly Picard operators in complete metric

spaces and give several examples. As applications, we give several re-

sults to Fredholm integral equation.

1. Introduction

It is well known that the classical Banach fixed point principle plays an
important role in applied mathematics. There are many generalizations of
classical Banach fixed point principle, see for instance ([1–13]) and others. Re-
cently, different authors proposed different types of formulations, all expressing
different contractive type conditions and most of these contractions are Picard
operator and therefore lead to the uniqueness of the fixed point. In this paper
we prove some fixed point theorems for single-valued and multi-valued weakly
Picard operators in complete metric spaces which that the uniqueness of the
fixed point is not guaranteed, and give several examples. Finally, we give sev-
eral results to Fredholm integral equation.

2. Fixed point theorems for single-valued weakly Picard operator

In this section, we present two fixed point theorems for single-valued weakly
Picard operators.

Definition 2.1. Let (X, d) be a metric space and T : X → X be a single-
valued operator from X to itself. We say that T is a single-valued operator
weakly Picard operator if for all x ∈ X, there exists a sequence {xn} such that:

(i) x1 = x, xn+1 = Txn for all n = 1, 2, . . .;
(ii) the sequence {xn} is convergent and its limit is a fixed point of T .
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Theorem 2.1. Let (X, d) be a complete metric space and T be a single valued
mapping from X to itself. Suppose there exists α > 0 such that

1

2
d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤M(x, y, α)d(x, y),

for all x, y ∈ X, where

M(x, y, α) =
d(x, Ty) + d(y, Tx) + d(x, y)

2d(x, Tx) + d(y, Ty) + α
.

Then
(1) T has at least one fixed point x̄ ∈ X;
(2) for any x ∈ X, the sequence {Tnx} converges to a fixed point;
(3) if x̄, ȳ ∈ X are two distinct fixed points, then

d(x̄, ȳ) ≥ α

3
.

Proof. Let x0 ∈ X be a fixed. Consider sequence {xn} by xn+1 = Txn for all
n ≥ 0. Set dn = d(xn, xn+1) for all n ≥ 0. Since

1

2
d(xn, Txn) =

1

2
d(xn, xn+1) ≤ d(xn, xn+1),

and by hypothesis, we have

dn+1 = d(Txn, Txn+1)

≤M(xn, xn+1, α)d(xn, xn+1)

=
[d(xn, Txn+1) + d(xn+1, Txn) + d(xn, xn+1)

2d(xn, Txn) + d(xn+1, Txn+1) + α

]
· d(xn, xn+1)

=
[ d(xn, xn+2) + d(xn, xn+1)

2d(xn, xn+1) + d(xn+1, xn+2) + α

]
· d(xn, xn+1)

≤
[ 2d(xn, xn+1) + d(xn+1, xn+2)

2d(xn, xn+1) + d(xn+1, xn+2) + α

]
· d(xn, xn+1)

=
[ 2dn + dn+1

2dn + dn+1 + α

]
· dn for all n ≥ 0.

Set

cn =
2dn + dn+1

2dn + dn+1 + α
for all n ≥ 0.

Then 0 ≤ cn < 1 and dn+1 ≤ cndn for all n ≥ 0. It follows that

dn ≤ dn−1 and dn ≤ cncn−1 · · · c1d0 for all n ≥ 1.

By the function f(t) = t
t+α is increasing on [0,+∞), cn ≤ cn−1 for all n ≥ 2.

Therefore

cncn−1 · · · c1 ≤ cn1 → 0 as n→∞.
Hence

lim
n→∞

cncn−1 · · · c1 = lim
n→∞

dn = 0.
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On the other hand, for all m > n, we have

d(xm, xn) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

= dn + dn+1 + · · ·+ dm−1

≤ cncn−1 · · · c1d0 + cn+1cn · · · c1d0 + · · ·+ cm−1cm−2 · · · c1d0
= (1 + cn+1 + · · ·+ cm−1cm−2 · · · cn+1)cncn−1 · · · c1d0
≤ (1 + c1 + · · ·+ cm−n−11 )cncn−1 · · · c1d0
≤ (1 + c1 + c21 + · · · )cncn−1 · · · c1d0

=
1

1− c1
cncn−1 · · · c1d0 → 0 as n→∞.

Thus
lim

n,m→∞
d(xm, xn) = 0.

This shows that {xn} is a Cauchy sequence in X. Since X is complete, {xn}
converges to some point x̄ ∈ X. Now, we show that for any n ≥ 0, either

1

2
d(xn, Txn) ≤ d(xn, x̄) or

1

2
d(Txn, Txn+1) ≤ d(Txn, x̄).(1)

Arguing by contradiction, we suppose that for some n ≥ 0 such that

d(xn, x̄) <
1

2
d(xn, Txn) and d(Txn, x̄) <

1

2
d(Txn, Txn+1).

Then, by the triangle inequality, we have

dn = d(xn, Txn) ≤ d(xn, x̄) + d(Txn, x̄)

<
1

2
d(xn, Txn) +

1

2
d(Txn, Txn+1)

=
1

2
dn +

1

2
dn+1

≤ dn.
This is a contradiction. Hence, from (1) for every n ≥ 0 we have, either

d(xn+1, T x̄) ≤M(xn, x̄, α)d(xn, x̄),

or
d(xn+2, T x̄) ≤M(xn+1, x̄, α)d(xn+1, x̄).

This is equivalent with either

d(xn+1, T x̄) ≤
[d(xn, T x̄) + d(xn+1, x̄) + d(xn, x̄)

2d(xn, xn+1) + d(x̄, T x̄) + α

]
· d(xn, x̄),(2)

or

d(xn+2, T x̄) ≤
[d(xn+1, T x̄) + d(xn+2, x̄) + d(xn+1, x̄)

2d(xn+1, xn+2) + d(x̄, T x̄) + α

]
· d(xn+1, x̄)(3)

holds for every n ≥ 0. Then, either (2) holds for infinity natural numbers n or
(3) holds for infinity natural numbers n. Suppose (2) holds for infinity natural



78 D. T. HIEU AND B. T. HUNG

numbers n. We can choose in that infinity set the sequence {nk} is a monotone
strictly increasing sequence of natural numbers. Therefore, the sequence {xnk

}
is a subsequence of {xn} and

d(xnk+1, T x̄) ≤
[d(xnk

, T x̄) + d(xnk+1, x̄) + d(xnk
, x̄)

2d(xnk
, xnk+1) + d(x̄, T x̄) + α

]
· d(xnk

, x̄).

Letting k →∞ and because {xnk+1} converges to x̄ we obtain lim
k→∞

xnk+1 = T x̄

thus T x̄ = x̄. So x̄ is a fixed point of T. If (3) holds for infinity natural numbers
n, by using an argument similar to that of above we have x̄ is a fixed point of
T. Suppose ȳ is a fixed point of T with x̄ 6= ȳ, then

0 =
1

2
d(x̄, T x̄) ≤ d(x̄, ȳ).

By hypothesis, we have

d(x̄, ȳ) = d(T x̄, T ȳ) ≤M(x̄, ȳ, α)d(x̄, ȳ).

This implies

d(x̄, ȳ) ≤
[d(x̄, T ȳ) + d(ȳ, T x̄) + d(x̄, ȳ)

2d(x̄, T x̄) + d(ȳ, T ȳ) + α

]
· d(x̄, ȳ)

=
3d2(x̄, ȳ)

α
.

Hence
d(x̄, ȳ) ≥ α

3
. �

Remark 2.2. Note that in Theorem 2.1, the ration M(x, y, α) might be greater
than 1 and the uniqueness of the fixed point is not guaranteed. The following
example shows this note precisely.

Example 2.3. Let X = {0, 1, 2} and let d : X ×X → [0,+∞) by

d(0, 0) = d(1, 1) = d(2, 2) = 0,

d(0, 1) = d(1, 0) =
1

2
,

d(0, 2) = d(2, 0) =
3

2
,

d(1, 2) = d(2, 1) = 2.

Then (X, d) is a complete metric space.
Let T : X → X by T0 = 0, T1 = 1 and T2 = 1. For α = 1, we have

M(0, 1, 1) =
d(0, T1) + d(T0, 1) + d(0, 1)

2d(0, T0) + d(1, T1) + 1
=

3

2
,

M(1, 2, 1) =
d(1, T2) + d(T1, 2) + d(1, 2)

2d(1, T1) + d(2, T2) + 1
=

4

3
,

M(0, 2, 1) =
d(0, T2) + d(T0, 2) + d(0, 2)

2d(0, T0) + d(2, T2) + 1
=

5

3
.
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Since 0 = 1
2d(0, T0) ≤ d(0, y) holds for any y ∈ X and

0 = d(T0, T0) ≤M(0, 0, 1)d(0, 0) = 0,

1

2
= d(T0, T1) ≤M(0, 1, 1)d(0, 1) =

3

4
,

1

2
= d(T0, T2) ≤M(0, 2, 1)d(0, 2) =

15

4
,

then

1

2
d(0, T0) ≤ d(0, y) implies d(T0, Ty) ≤M(0, y, 1)d(0, y) for all y ∈ X.

Again, since 0 = 1
2d(1, T1) ≤ d(1, y) holds for any y ∈ X and

1

2
= d(T1, T0) ≤M(1, 0, 1)d(1, 0) =

3

4
,

0 = d(T1, T1) ≤M(1, 1, 1)d(1, 1) = 0,

0 = d(T1, T2) ≤M(0, 2, 1)d(0, 2) =
15

6
,

then

1

2
d(1, T1) ≤ d(1, y) implies d(T1, Ty) ≤M(1, y, 1)d(1, y) for all y ∈ X.

Finally, by 1 = 1
2d(2, T2) ≤ d(2, y) if and only if y ∈ X\{2} and

1

2
= d(T2, T0) ≤M(2, 0, 1)d(2, 0) =

5

2
,

0 = d(T2, T1) ≤M(2, 1, 1)d(2, 1) =
8

3
,

then

1

2
d(2, T2) ≤ d(2, y) implies d(T2, Ty) ≤M(2, y, 1)d(2, y) for all y ∈ X.

Therefore T satisfies all the conditions of Theorem 2.1 for α = 1. Also, T has
two distinct fixed points {0, 1} and

1

2
= d(0, 1) ≥ α

3
=

1

3
.

Corollary 2.4. Let (X, d) be a complete metric space and T be a single valued
mapping from X to itself. Suppose there exists α > 0 such that

1

2
d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤M(x, y, α)d(x, y),

for all x, y ∈ X, where

M(x, y, α) =
d(x, Ty) + d(y, Tx) + d(x, y)

2d(x, Tx) + d(y, Ty) + α
.

Then T has a unique fixed point if M(x, y, α) < 1 for all x, y ∈ X.
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Proof. From Theorem 2.1, T has a fixed point x̄. If ȳ is a fixed point of T , then

0 =
1

2
d(x̄, T x̄) ≤ d(x̄, ȳ).

By hypothesis, we have

d(x̄, ȳ) = d(T x̄, T ȳ) ≤M(x̄, ȳ, α)d(x̄, ȳ).

This implies
[1−M(x̄, ȳ, α)]d(x̄, ȳ) ≤ 0.

Since 0 ≤M(x̄, ȳ, α) < 1, d(x̄, ȳ) = 0. Hence x̄ = ȳ. �

Example 2.5. Let X = {0, 1, 2} and let d : X ×X → R by

d(0, 0) = d(1, 1) = d(2, 2) = 0,

d(0, 1) = d(1, 0) =
1

2
,

d(0, 2) = d(2, 0) = 1,

d(1, 2) = d(2, 1) =
1

2
.

Then (X, d) is a complete metric space. Let T : X → X by T0 = 0, T1 = 0
and T2 = 0. For α = 2, we have

M(0, 0, 2) =
d(0, T0) + d(0, T0) + d(0, 0)

2d(0, T0) + d(0, T0) + 2
= 0,

M(1, 1, 2) =
d(1, T1) + d(1, T1) + d(1, 1)

2d(1, T1) + d(1, T1) + 2
=

2

7
,

M(2, 2, 2) =
d(2, T2) + d(2, T2) + d(2, 2)

2d(2, T2) + d(2, T2) + 2
=

2

5
,

M(0, 1, 2) =
d(0, T1) + d(1, T0) + d(0, 1)

2d(0, T0) + d(1, T1) + 2
=

2

5
,

M(1, 0, 2) =
d(1, T0) + d(0, T1) + d(1, 0)

2d(1, T1) + d(0, T0) + 2
=

1

3
,

M(1, 2, 2) =
d(1, T2) + d(2, T1) + d(1, 2)

2d(1, T1) + d(2, T2) + 2
=

2

5
,

M(2, 1, 2) =
d(2, T1) + d(1, T2) + d(2, 1)

2d(2, T2) + d(1, T1) + 2
=

4

9
,

M(0, 2, 2) =
d(0, T2) + d(2, T0) + d(0, 2)

2d(0, T0) + d(2, T2) + 2
=

2

3
,

M(2, 0, 2) =
d(2, T0) + d(0, T2) + d(2, 0)

2d(2, T2) + d(0, T0) + 2
=

1

2
.

Then M(x, y, 2) < 1 for all x, y ∈ X. Moreover, since d(Tx, Ty) = 0 for all
x, y ∈ X, then

d(Tx, Ty) ≤M(x, y, 2)d(x, y) for all x, y ∈ X.
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Therefore T satisfies all the conditions of Corollary 2.4 for α = 2. Also, T has
a unique fixed points x̄ = 0.

Theorem 2.6. Let (X, d) be a complete metric space and T be a single valued
mapping from X to itself. Suppose there exists α > 0 such that

1

2
d(Tx, x) ≤ d(x, y) implies d(Tx, Ty) ≤ N(x, y, α)d(x, y),

for all x, y ∈ X, where

N(x, y, α) =
d(x, Ty) + d(y, Tx) + d(x, Tx) + d(y, Ty) + d(x, y)

3d(x, Tx) + 2d(y, Ty) + α
.

Then
(1) T has at least one fixed point x̄ ∈ X;
(2) for any x ∈ X, the sequence {Tnx} converges to a fixed point;
(3) if x̄, ȳ ∈ X are two distinct fixed points, then

d(x̄, ȳ) ≥ α

3
.

Proof. Let x0 ∈ X be a fixed. Consider the sequence {xn} by xn+1 = Txn for
all n ≥ 0. Set dn = d(xn, xn+1) for all n ≥ 0. Then we have

1

2
d(xn, Txn) =

1

2
d(xn, xn+1) ≤ d(xn, xn+1).

By hypothesis, we have

dn+1 = d(Txn, Txn+1)

≤ N(xn, xn+1, α)d(xn, xn+1)

=
[d(xn, xn+2) + 2d(xn, xn+1) + d(xn+1, xn+2)

3d(xn, xn+1) + 2d(xn+1, xn+2) + α

]
· d(xn, xn+1)

≤
[ 3d(xn, xn+1) + 2d(xn+1, xn+2)

3d(xn, xn+1) + 2d(xn+1, xn+2) + α

]
· d(xn, xn+1)

=
[ 3dn + 2dn+1

3dn + 2dn+1 + α

]
· dn for all n ≥ 1.

Set

cn =
3dn + 2dn+1

3dn + 2dn+1 + α
for all n ≥ 0.

Then 0 ≤ cn < 1 and dn+1 ≤ cndn for all n ≥ 0. It follows that

dn ≤ dn−1 and dn ≤ cncn−1 · · · c1d0 for all n ≥ 1.

By using an argument similar to that of the proof of Theorem 2.1, we have
completes the proof. �

Remark 2.7. Since

M(x, y, α) ≤ N(x, y, α),

for all x, y ∈ X and α > 0, then Theorem 2.6 implies Theorem 2.1.
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3. Fixed point theorems for multi-valued weakly Picard operator

Let (X, d) be a metric space. Let CB(X) be the collection of all nonempty
bounded closed subsets of X. Let T : X → CB(X) be a multivalued mapping
on X. Let H be the Hausdorff metric on CB(X) induced by d, that is,

H(A,B) := max{sup
x∈B

ρ(x,A); sup
x∈A

ρ(x,B)},

where A,B ∈ CB(X) and ρ(x,A) := infy∈A d(x, y). Denote

δ(x,A) := sup
y∈A

d(x, y).

Definition 3.1. Let (X, d) be a metric space and T : X → CB(X) be a
multivalued operator. We say that T is a multivalued operator weakly Picard
operator if for all x ∈ X and y ∈ Tx, there exists a sequence {xn} such that:

(i) x1 = x, x2 = y;
(ii) xn+1 ∈ Txn for all n = 1, 2, . . .;
(iii) the sequence {xn} is convergent and its limit is a fixed point of T .

Theorem 3.1. Let (X, d) be a complete metric space and let T : X → CB(X)
be an multivalued mapping. Suppose there exists α > 0 such that

1

2
ρ(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ P (x, y, α)d(x, y),

for all x, y ∈ X, where

P (x, y, α) =
ρ(x, Ty) + ρ(y, Tx) + d(x, y)

2δ(x, Tx) + δ(y, Ty) + α
.

Then
(1) T has at least one fixed point x̄ ∈ X;
(2) if x̄, ȳ ∈ X are two fixed points, then

d2(x̄, ȳ) ≥ α

3
H(T x̄, T ȳ).

Proof. Let x0 ∈ X and choose x1 ∈ Tx0.
Step 1. If H(Tx0, Tx1) = 0, then Tx0 = Tx1. Thus, x1 is a fixed point of T .
If H(Tx0, Tx1) > 0, then for each h1 > 1, there exists x2 ∈ Tx1 such that

d(x1, x2) < h1H(Tx0, Tx1).

Step 2. Similarly, if H(Tx1, Tx2) = 0, then Tx1 = Tx2. Thus, x2 is a fixed
point of T . If H(Tx1, Tx2) > 0, then for each h2 > 1, there exists x3 ∈ Tx2
such that

d(x2, x3) < h2H(Tx1, Tx2).

...
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Step n. Continuing in this manner, ifH(Txn−1, Txn) = 0, then Txn−1 = Txn.
Thus, xn is a fixed point of T . If H(Txn−1, Txn) > 0, then for each hn > 1,
there exists xn+1 ∈ Txn such that

d(xn, xn+1) < hnH(Txn−1, Txn).

The above process continues, if at step k satisfy H(Txk−1, Txk) = 0, then
xk is a fixed point of T. If not, we get obtain two sequences {xn} and {hn}n≥1
such that xn ∈ Txn−1, hn > 1 and

d(xn, xn+1) < hnH(Txn−1, Txn) for all n ≥ 1.

Since 1
2ρ(xn−1, Txn−1) ≤ d(xn−1, xn) and by hypothesis, we have

H(Txn−1, Txn) ≤ P (xn−1, xn, α)d(xn−1, xn)

=
[ρ(xn−1, Txn) + ρ(xn, Txn−1) + d(xn−1, xn)

2δ(xn−1, Txn−1) + δ(xn, Txn) + α

]
· d(xn−1, xn)

=
[ ρ(xn−1, Txn) + d(xn−1, xn)

2δ(xn−1, Txn−1) + δ(xn, Txn) + α

]
· d(xn−1, xn).(4)

On the other hand, for some yn ∈ T (xn), we have

ρ(xn−1, Txn) + d(xn−1, xn)

2δ(xn−1, Txn−1) + δ(xn, Txn) + α
≤ d(xn−1, yn) + d(xn−1, xn)

2d(xn−1, xn) + d(xn, yn) + α

≤ 2d(xn−1, xn) + d(xn, yn)

2d(xn−1, xn) + d(xn, yn) + α
.(5)

From (4) and (5), we have

H(Txn−1, Txn) ≤
[ 2d(xn−1, xn) + d(xn, yn)

2d(xn−1, xn) + d(xn, yn) + α

]
· d(xn−1, xn).

Set

cn =
2d(xn−1, xn) + d(xn, yn)

2d(xn−1, xn) + d(xn, yn) + α
.

Then 0 < cn < 1 and

dn < hncndn−1, where dn = d(xn, xn+1), dn−1 = d(xn−1, xn).

We choose hn = 1√
cn

. Then we have

dn <
√
cndn−1.

This implies

dn <
√
cncn−1 · · · c1d0.

By using an argument similar to that of the proof of Theorem 2.1, there exists
x̄ ∈ X such that lim

n→∞
xn = x̄. We show that for any n ≥ 0, either

1

2
ρ(xn, Txn) ≤ d(xn, x̄) or

1

2
ρ(xn+1, Txn+1) ≤ d(xn+1, x̄).(6)
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Arguing by contradiction, we suppose that for some n ≥ 0 such that

d(xn, x̄) <
1

2
ρ(xn, Txn) and d(xn+1, x̄) <

1

2
ρ(xn+1, Txn+1).

Then, by the triangle inequality, we have

dn = d(xn, xn+1) ≤ d(xn, x̄) + d(xn+1, x̄)

<
1

2
ρ(xn, Txn) +

1

2
ρ(xn+1, Txn+1)

≤ 1

2
d(xn, xn+1) +

1

2
d(xn+1, xn+2)

≤ dn.

This is a contradiction. Hence, from (6) and by hypotheses for each n ≥ 0,
either

(7) H(Txn, T x̄) ≤ P (xn, x̄, α)d(xn, x̄),

or

(8) H(Txn+1, T x̄) ≤ P (xn+1, x̄, α)d(xn+1, x̄).

Then, either (7) holds for infinity natural numbers n or (8) holds for infinity
natural numbers n. Suppose (7) holds for infinity natural numbers n. We can
choose in that infinity set the sequence {nk} is a monotone strictly increasing
sequence of natural numbers. Therefore, sequence {xnk

} is a subsequence of
{xn} and

ρ(x̄, T x̄) ≤ d(xnk+1, x̄) +H(Txnk
, T x̄)

≤ d(xnk+1, x̄) +
[ρ(xnk

, T x̄) + ρ(x̄, Txnk
) + d(xnk

, x̄)

2δ(xnk
, Txnk

) + δ(x̄, T x̄) + α

]
· d(xnk

, x̄)

≤ d(xnk+1, x̄) +
[2d(xnk

, x̄) + ρ(x̄, T x̄) + d(xnk+1, x̄)

2d(xnk
, xnk+1) + δ(x̄, T x̄) + α

]
· d(xnk

, x̄).

On taking limit on both sides of above inequality, we have ρ(x̄, T x̄) = 0. It
means that x̄ ∈ T x̄. If (8) holds for infinity natural numbers n, by using an
argument similar to that of above we have x̄ is a fixed point of T. Now, let ȳ is
a fixed point of T . Since 0 = 1

2ρ(x̄, T x̄) ≤ d(x̄, ȳ) and by hypothesis, we have

H(T x̄, T ȳ) ≤ P (x̄, ȳ, α)d(x̄, ȳ)

=
[ρ(x̄, T ȳ) + ρ(ȳ, T x̄) + d(x̄, ȳ)

2δ(x̄, T x̄) + δ(y, T ȳ) + α

]
· d(x̄, ȳ)

≤
[d(x̄, ȳ) + d(x̄, ȳ) + d(x̄, ȳ)

α

]
· d(x̄, ȳ).

This implies

d2(x̄, ȳ) ≥ α

3
H(T x̄, T ȳ). �
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Example 3.2. Let X = {0, 1, 2} and let d : X ×X → [0,+∞) by

d(x, y) =

{
0, if x = y ∈ X,
2, if x 6= y ∈ X.

Then (X, d) is a complete metric space.
Let T : X → CB(X) by T0 = {0}, T1 = {1} and T2 = {1, 2}. For α = 2,

we have

H(T0, T1) = H(T0, T2) = H(T1, T2) = 2,

and

P (0, 1, 2) =
ρ(0, T1) + ρ(1, T0) + d(0, 1)

2δ(0, T0) + δ(1, T1) + 2
= 3,

P (0, 2, 2) =
ρ(0, T2) + ρ(2, T0) + d(0, 2)

2δ(0, T0) + δ(2, T2) + 2
=

3

2
,

P (1, 2, 2) =
ρ(1, T2) + ρ(2, T1) + d(1, 2)

2δ(1, T1) + δ(2, T2) + 2
= 1.

We early check that 1
2ρ(x, Tx) ≤ d(x, y) for all x, y ∈ X. On the other hand

2 = H(T0, T1) ≤ P (0, 1, 2)d(0, 1) = 6,

2 = H(T0, T2) ≤ P (0, 2, 2)d(0, 2) = 3,

2 = H(T1, T2) ≤ P (1, 2, 2)d(1, 2) = 2.

Hence

H(Tx, Ty) ≤ P (x, y, α)d(x, y) for all x, y ∈ X.
Therefore T satisfies all the conditions of Theorem 3.1 for α = 2. Also, T has
three distinct fixed points {0, 1, 2}. Moreover, we early check that

d2(x̄, ȳ) ≥ 2

3
H(T x̄, T ȳ) for all x̄, ȳ ∈ X.

Corollary 3.3. Let (X, d) be a complete metric space and let T : X → CB(X)
be an multivalued mapping. Suppose there exists α > 0 such that

1

2
ρ(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ P (x, y, α)d(x, y),

for all x, y ∈ X, where

P (x, y, α) =
ρ(x, Ty) + ρ(y, Tx) + d(x, y)

2δ(x, Tx) + δ(y, Ty) + α
.

Then T has a unique fixed point if P (x, y, α) < 1 for all x, y ∈ X.

Proof. From Theorem 3.1, T has a fixed point x̄. If ȳ is a fixed point of T , then

0 =
1

2
ρ(x̄, T x̄) ≤ d(x̄, ȳ).

By hypothesis, we have

H(T x̄, T ȳ) ≤ P (x̄, ȳ, α)d(x̄, ȳ).
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Since d(x̄, ȳ) ≤ H(T x̄, T ȳ),

[1− P (x̄, ȳ, α)]d(x̄, ȳ) ≤ 0.

Thus, d(x̄, ȳ) = 0. Hence x̄ = ȳ. �

Theorem 3.4. Let (X, d) be a complete metric space and let T : X → CB(X)
be an multivalued mapping. Suppose there exists α > 0 such that

1

2
ρ(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ Q(x, y, α)d(x, y),

for all x, y ∈ X, where

Q(x, y, α) =
ρ(x, Ty) + ρ(y, Tx) + ρ(x, Tx) + ρ(y, Ty) + d(x, y)

3δ(x, Tx) + 2δ(y, Ty) + α
.

Then
(1) T has at least one fixed point x̄ ∈ X;
(2) if x̄, ȳ ∈ X are two fixed points, then

d2(x̄, ȳ) ≥ α

3
H(T x̄, T ȳ).

Proof. Let x0 ∈ X. By using an argument similar to that of the proof of
Theorem 3.1, for each n ≥ 1, there exist x1, x2, x3, . . . , xn with xn ∈ Txn−1 for
all n ≥ 1. If H(Txn−1, Txn) = 0, then Txn−1 = Txn. Thus, xn is a fixed point
of T . If H(Txn−1, Txn) > 0, then for each hn > 1, there exists xn+1 ∈ Txn
such that

d(xn, xn+1) < hnH(Txn−1, Txn).

Since 1
2ρ(xn−1, Txn−1) ≤ d(xn−1, xn) and by hypothesis, we have

H(Txn−1, Txn) ≤ Q(xn−1, xn, α)d(xn−1, xn)

≤
[ 3d(xn−1, xn) + 2d(xn, yn)

3d(xn−1, xn) + 2d(xn, yn) + α

]
· d(xn−1, xn)

for some yn ∈ Txn. Set

cn =
3d(xn−1, xn) + 2d(xn, yn)

3d(xn−1, xn) + 2d(xn, yn) + α
.

Then 0 < cn < 1 and

dn < hncndn−1, where dn = d(xn, xn+1), dn−1 = d(xn−1, xn).

By using an argument similar to that of the proof of Theorem 3.1, we have
completes the proof. �

Remark 3.5. If T is a single map, then Theorem 3.1 reduces to Theorem 2.1
and Theorem 3.4 reduces to Theorem 2.6.
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4. Application to Fredholm integral equation

Consider the Fredholm integral equation

x(t) =

∫ b

a

K(t, s)x(s)ds, t ∈ [a, b],

where K(t, s) is continuous on the square [a, b]× [a, b] and x ∈ C[a,b].

Theorem 4.1. Let K(t, s) be a continuous function on the square [a, b]× [a, b].
Suppose there exists α > 0 such that

1

2
max
t∈[a,b]

|x(t)−
∫ b

a

K(t, s)x(s)ds| ≤ max
t∈[a,b]

|x(t)− y(t)|

implies

max
t∈[a,b]

|
∫ b

a

K(t, s)[x(s)− y(s)]ds| ≤ F (x, y)

G(x, y, α)
max
t∈[a,b]

|x(t)− y(t)|

for all x, y ∈ C[a,b], where

F (x, y) = max
t∈[a,b]

|x(t)−
∫ b

a

K(t, s)y(s)ds|

+ max
t∈[a,b]

|y(t)−
∫ b

a

K(t, s)x(s)ds|+ max
t∈[a,b]

|x(t)− y(t)|,

G(x, y, α) = 2 max
t∈[a,b]

|x(t)−
∫ b

a

K(t, s)x(s)ds|

+ max
t∈[a,b]

|y(t)−
∫ b

a

K(t, s)y(s)ds|+ α.

Then
(1) Fredholm integral equation has at least one solution x̄ ∈ C[a,b];
(2) if x̄, ȳ ∈ C[a,b] are two distinct solutions of Fredholm integral equation,

then

max
t∈[a,b]

|x̄(t)− ȳ(t)| ≥ α

3
.

Proof. Set X = C[a,b] and d : X ×X → [0,+∞) by

d(x, y) = max
t∈[a,b]

|x(t)− y(t)|.

Then (X, d) is a complete metric space. Let T : X → X by

Tx(t) =

∫ b

a

K(t, s)x(s)ds.

Since hypothesis, we have

1

2
d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤M(x, y, α)d(x, y),
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for all x, y ∈ X, where

M(x, y, α) =
F (x, y)

G(x, y, α)
.

By Theorem 2.1, there exists x̄ ∈ X such that x̄ = T x̄. This means that x̄
is a solution of Fredholm integral equation. Moreover, if x̄, ȳ ∈ C[a,b] are two
distinct solutions of Fredholm integral equation, then

max
t∈[a,b]

|x̄(t)− ȳ(t)| ≥ α

3
.

This completes the proof. �
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