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APPROXIMATION BY GENUINE LUPAŞ-BETA-STANCU
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Abstract. In this paper, we introduce a Stancu type generalization of

genuine Lupaş-Beta operators of integral type. We establish some moment
estimates and the direct results in terms of classical modulus of continu-

ity, Voronovskaja-type asymptotic theorem, weighted approximation, rate
of convergence and pointwise estimates using the Lipschitz type maximal

function. Lastly, we propose a king type modification of these operators to

obtain better estimates.
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1. Introduction

The approximation of functions by positive linear operators is an important
research area in the classical approximation theory. It provides us key tools
for exploring the computer-aided geometric design, numerical analysis and the
solutions of ordinary and partial differential equations that arise in the mathe-
matical modeling of real world phenomena.
In the year 1995, Lupaş introduced an important discrete operators as follows

Ln(f, x) =

∞∑
k=0

ln,k(x)f(k/n), x ∈ [0,∞) (1)

where

ln,k(x) = 2−nx
(nx)k
k!.2k

.

In the last four decades several operators have been modified and their approxi-
mation properties has been discussed in real and complex domain (see [11], [22],
[32] etc.). In order to modify the operators (1), Govil et al. in [10] considered the
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hybrid operators by taking the weights of Szász basis functions. In [9], Gupta
and Yadav considered other hybrid operators by taking weights of Beta basis
function, but the operators reproduce only the constant functions. Later in [8]
Gupta, Rassias and Yadav considered the following form of hybrid operators,
which preserve constant as well as linear functions

Dn(f, x) =
∞∑
k=1

ln,k(x)

∫ ∞
0

bn,k−1(t)f(t)dt+ 2−nxf(0), x ∈ [0,∞) (2)

where

bn,k−1(t) =
1

B(k, n+ 1)

tk−1

(1 + t)k+n+1
,

and B(m,n) being the Beta function defined as

B(m,n) =
ΓmΓn

Γm+ n
, m, n > 0.

Very recently, Gupta, Rassias and Pandey [7] studied some approximation prop-
erties on the weighted modulus of continuity for these operators.
In [33], Stancu introduced the positive linear operators Pα,βn : C[0, 1] → C[0, 1]
by modifying the Bernstein polynomial as

Pα,βn (f ;x) =

n∑
k=0

bn,k(x)f

(
k + α

n+ β

)
,

where bn,k(x) =
(
n
k

)
xk(1− x)n−k, x ∈ [0, 1] is the Bernstein basis function and

α, β are any two real numbers which satisfy the condition that 0 ≤ α ≤ β.
In the recent years, Stancu type generalization of the certain operators intro-
duced by several researchers and obtained different type of approximation prop-
erties of many operators, we refer some of the important papers in this direction
as [2], [17], [18], [25] [26], [30],etc.
For f ∈ C[0,∞), 0 ≤ α ≤ β we introduce the following Stancu type general-
ization of the operators (2):

Dα,β
n (f ;x) =

∞∑
k=1

ln,k(x)

∫ ∞
0

bn,k−1(t)f

(
nt+ α

n+ β

)
dt+ 2−nxf

(
α

n+ β

)
.(3)

For α = β = 0, we denote Dα,β
n (f ;x) by Dn(f ;x).

The purpose of this paper is to study the basic convergence theorem, Voronovskaja-
type asymptotic result, rate of convergence, weighted approximation and point-
wise estimation of the operators (3). Further, to obtain better approximation,
we also propose modification of the operators (3) using King type approach.

2. Moment Estimates

In this section we collect some results about the operators Dα,β
n useful in the

sequel.
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Lemma 2.1. [7] For n > 1, we have

(1) Dn(1;x) = 1;
(2) Dn(t;x) = x;

(3) Dn(t2;x) =
nx2 + 3x

n− 1
.

Lemma 2.2. For the operators Dα,β
n (f ;x) as defined in (3), the following equal-

ities holds for n > 1

(1) Dα,β
n (1;x) = 1;

(2) Dα,β
n (t;x) =

nx+ α

n+ β
;

(3) Dα,β
n (t2;x) =

{
n3

(n− 1)(n+ β)2

}
x2+

{
3n2 + 2αn(n− 1)

(n− 1)(n+ β)2

}
x+

α2

(n+ β)2
.

Proof. For x ∈ [0,∞), in view of Lemma 2.1, we have

Dα,β
n (1;x) = 1.

Next, for f(t) = t, again applying Lemma 2.1, we get

Dα,β
n (f ;x) =

∞∑
k=1

ln,k(x)

∫ ∞
0

bn,k−1(t)

(
nt+ α

n+ β

)
dt+ 2−nx

(
α

n+ β

)
=

n

n+ β
Dn(t, x) +

α

n+ β
=
nx+ α

n+ β
.

Proceeding similarly, we have

Dα,β
n (f ;x) =

∞∑
k=1

ln,k(x)

∫ ∞
0

bn,k−1(t)

(
nt+ α

n+ β

)2

dt+ 2−nx
(

α

n+ β

)2

=

(
n

n+ β

)2

Dn(t2, x) +
2nα

(n+ β)2
Dn(t, x) +

(
α

n+ β

)2

=

{
n3

(n− 1)(n+ β)2

}
x2 +

{
3n2 + 2αn(n− 1)

(n− 1)(n+ β)2

}
x+

α2

(n+ β)2
.

�

Lemma 2.3. For f ∈ CB [0,∞) (space of all real valued bounded and uniformly
continuous functions on [0,∞) endowed with the norm ‖ f ‖= sup{|f(x)| : x ∈
[0,∞)}), ‖ Dα,β

n (f) ‖≤‖ f ‖.

Proof. In view of (3) and Lemma 2.2, the proof of this lemma easily follows. �

Remark 2.1. For n > 1, we have

Dα,β
n ((t− x);x) =

α− βx
n+ β

and

Dα,β
n

(
(t− x)2;x

)
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=

{
n2 + β2(n− 1)

(n− 1)(n+ β)2

}
x2 +

{
3n2 + 2αβ(1− n)

(n− 1)(n+ β)2

}
x+

α2

(n+ β)2

= ξα,βn (x), (say).

3. Main results

In this section we establish some approximation properties in several settings.
For the reader’s convenience we split up this section in more subsections.

Theorem 3.1. (Voronovskaja-type theorem) Let f ∈ CB [0,∞). If f ′, f ′′ exists
at a fixed point x ∈ [0,∞), then we have

lim
n→∞

n
(
Dα,β
n (f ;x)− f(x)

)
= (α− βx)f ′(x) +

x(x+ 3)

2
f ′′(x).

Proof. Let x ∈ [0,∞) be fixed. Using Taylor’s expansion of f , we obtain

f(t) = f(x) + (t− x)f ′(x) +
f ′′(x)

2
(t− x)2 + r(t, x)(t− x)2, (4)

where the function r(t, x) is the Peano form of remainder and lim
t→x

r(t, x) = 0.

Applying Dα,β
n (f ;x) on both sides of (4), we have

n
(
Dα,β
n (f ;x)− f(x)

)
= nf ′(x)Dα,β

n ((t− x);x) +
1

2
nf ′′(x)Dα,β

n

(
(t− x)2;x

)
+nDα,β

n

(
(t− x)2r(t, x);x

)
.

In view of Remark 2.1, we have

lim
n→∞

nDα,β
n ((t− x);x) = α− βx (5)

and

lim
n→∞

nDα,β
n

(
(t− x)2;x

)
= x(x+ 3). (6)

Now, we shall show that

lim
n→∞

nDα,β
n

(
r(t, x)(t− x)2;x

)
= 0

By using Cauchy-Schwarz inequality, we have

Dα,β
n

(
r(t, x)(t− x)2;x

)
≤

(
Dα,β
n (r2(t, x);x)

)1/2 (
Dα,β
n ((t− x)4;x)

)1/2
.(7)

We observe that r2(x, x) = 0 and r2(., x) ∈ CB [0,∞). Then, it follows that

lim
n→∞

Dα,β
n (r2(t, x);x) = r2(x, x) = 0, (8)

in view of fact that Dα,β
n ((t− x)4;x) = O

(
1

n2

)
.

Now, from (7) and (8) we obtain

lim
n→∞

nDα,β
n

(
r(t, x)(t− x)2;x

)
= 0. (9)
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From (5), (6) and (9), we get the required result. �

3.1. Local approximation. For CB [0,∞), let us consider the following K-
functional:

K2(f, δ) = inf
g∈W 2

{‖ f − g ‖ +δ ‖ g′′ ‖},

where δ > 0 and W 2 = {g ∈ CB [0,∞) : g′, g′′ ∈ CB [0,∞)}. By, p. 177, Theorem
2.4 in [1], there exists an absolute constant M > 0 such that

K2(f, δ) ≤Mω2(f,
√
δ), (10)

where

ω2(f,
√
δ) = sup

0<h≤
√
δ

sup
x∈[0,∞)

| f(x+ 2h)− 2f(x+ h) + f(x) |

is the second order modulus of smoothness of f . By

ω(f, δ) = sup
0<h≤δ

sup
x∈[0,∞)

| f(x+ h)− f(x) |,

we denote the first order modulus of continuity of f ∈ CB [0,∞).

Theorem 3.2. Let f ∈ CB [0,∞). Then, for every x ∈ [0,∞), we have

| Dα,β
n (f ;x)− f(x) | ≤ Mω2

(
f, ζα,βn (x)

)
+ ω

(
f,
|α− βx|
n+ β

)
,

where M is a positive constant and

ζα,βn (x) =

(
ξα,βn (x) +

(
α− βx
n+ β

)2)1/2

.

Proof. For x ∈ [0,∞), we consider the auxiliary operators D
α,β

n defined by

D
α,β

n (f ;x) = Dα,β
n (f ;x)− f

(
nx+ α

n+ β

)
+ f(x). (11)

From Lemma 2.2, we observe that the operators D
α,β

n are linear and reproduce
the linear functions.
Hence

D
α,β

n ((t− x);x) = 0. (12)

Let g ∈W 2 and x, t ∈ [0,∞). By Taylor’s expansion we have

g(t) = g(x) + (t− x)g′(x) +

∫ t

x

(t− v)g′′(v)dv.

Applying D
α,β

n on both sides of the above equation and using (12), we get

D
α,β

n (g;x)− g(x) = D
α,β

n

(∫ t

x

(t− v)g′′(v)dv;x

)
.
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Thus, by (11) we get

|Dα,β

n (g;x)− g(x)|

≤ Dα,β
n

(∣∣∣∣ ∫ t

x

(t− v)g′′(v)dv

∣∣∣∣;x)+

∣∣∣∣ ∫ nx+α
n+β

x

(
nx+ α

n+ β
− v
)
g′′(v)dv

∣∣∣∣
≤

(
ξα,βn (x) +

(
α− βx
n+ β

)2)
‖ g′′ ‖

≤
(
ζα,βn (x)

)2 ‖ g′′ ‖ . (13)

On other hand, by (11) and Lemma 2.3, we have

|Dα,β

n (f ;x)| ≤ ‖ f ‖ . (14)

Using (13) and (14) in (11), we obtain
|Dα,β

n (f ;x)− f(x)|

≤ |Dα,β

n (f − g;x)|+ |(f − g)(x)|+ |Dα,β

n (g;x)− g(x)|+
∣∣∣∣f (nx+ α

n+ β

)
− f(x)

∣∣∣∣
≤ 2 ‖ f − g ‖ +

(
ζα,βn (x)

)2 ‖ g′′ ‖ +

∣∣∣∣f (nx+ α

n+ β

)
− f(x)

∣∣∣∣.
Taking infimum over all g ∈W 2, we get

| Dα,β
n (f ;x)− f(x) | ≤ K2

(
f, (ζα,βn (x))2

)
+ ω

(
f,
|α− βx|
n+ β

)
.

In view of (10), we get

| Dα,β
n (f ;x)− f(x) | ≤ Mω2

(
f, ζα,βn (x)

)
+ ω

(
f,
|α− βx|
n+ β

)
,

which proves the theorem. �

3.2. Rate of convergence. Let ωa(f, δ) denote the usual modulus of continu-
ity of f on the closed interval [0, a], a > 0, and defined as

ωa(f, δ) = sup
|t−x|≤δ

sup
x,t∈[0,a]

|f(t)− f(x)|.

We observe that for a function f ∈ CB [0,∞), the modulus of continuity ωa(f, δ)
tends to zero.
Now, we give a rate of convergence theorem for the operators Dα,β

n .

Theorem 3.3. Let f ∈ CB [0,∞) and ωa+1(f, δ) be its modulus of continuity on
the finite interval [0, a+ 1] ⊂ [0,∞), where a > 0. Then, for every n > 1,

|Dα,β
n (f ;x)− f(x)| ≤ 6Mf (1 + a2)ξα,βn (a) + 2ωa+1

(
f,

√
ξα,βn (a)

)
,

where ξα,βn (a) is defined in Remark 2.1 and Mf is a constant depending only on
f.
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Proof. For x ∈ [0, a] and t > a+ 1. Since t− x > 1, we have

|f(t)− f(x)| ≤ Mf (2 + x2 + t2)

≤ Mf (t− x)2(2 + 3x2 + 2(t− x)2)

≤ 6Mf (1 + a2)(t− x)2.

For x ∈ [0, a] and t ≤ a+ 1, we have

|f(t)− f(x)| ≤ ωa+1(f, |t− x|) ≤
(

1 +
|t− x|
δ

)
ωa+1(f, δ)

with δ > 0.
From the above, we have

|f(t)− f(x)| ≤ 6Mf (1 + a2)(t− x)2 +

(
1 +
|t− x|
δ

)
ωa+1(f, δ),

for x ∈ [0, a] and t ≥ 0.
Thus

|Dα,β
n (f ;x)− f(x)| ≤ 6Mf (1 + a2)(Dα,β

n (t− x)2;x)

+ωa+1(f, δ)

(
1 +

1

δ
(Dα,β

n (t− x)2;x)
1
2

)
Applying Cauchy-Schwarz’s inequality, we get

|Dα,β
n (f ;x)− f(x)| ≤ 6Mf (1 + a2)ξα,βn (a) + 2ωa+1

(
f,

√
ξα,βn (a)

)
,

on choosing δ =

√
ξα,βn (a). This completes the proof of theorem. �

3.3. Weighted approximation. In this section, we obtain the Korovkin
type weighted approximation by the operators defined in (3) . The weighted
Korovkin-type theorems were proved by Gadzhiev [3]. A real function ν(x) =
1 + x2 is called a weight function if it is continuous on R and lim

|x|→∞
ν(x) =

∞, ν(x) ≥ 1 for all x ∈ R.
Let Bν [0,∞) denote the weighted space of real-valued functions f defined on
[0,∞) with the property |f(x)| ≤ Mfν(x) for all x ∈ [0,∞), where Mf is a
constant depending on the function f . We also consider the weighted subspace
Cν [0,∞) of Bν [0,∞) given by Cν [0,∞) = {f ∈ Bν [0,∞) : f is continuous on
[0,∞)} and C∗ν [0,∞) denotes the subspace of all functions f ∈ Cν [0,∞) for

which lim
|x|→∞

f(x)

ν(x)
exists finitely.

It is obvious that C∗ν [0,∞) ⊂ Cν [0,∞) ⊂ Bν [0,∞). The space Bν [0,∞) is a
normed linear space with the following norm:

‖ f ‖ν= sup
x∈[0,∞)

|f(x)|
ν(x)

.



22 Alok Kumar, Vandana

Theorem 3.4. For each f ∈ C∗ν , we have

lim
n→∞

‖ Dα,β
n (f)− f ‖ν= 0.

Proof. From [3], we know that it is sufficient to verify the following three condi-
tions

lim
n→∞

‖ Dα,β
n (tr)− xr ‖ν= 0, r = 0, 1, 2. (15)

Since Dα,β
n (1;x) = 1, the condition in (15) holds for r = 0.

For n > 1, we have

‖ Dα,β
n (t)− x ‖ν = sup

x∈[0,∞)

|Dα,β
n (t;x)− x|

1 + x2

≤ β

n+ β
sup

x∈[0,∞)

x

1 + x2
+

α

n+ β
sup

x∈[0,∞)

1

1 + x2

≤ α+ β

n+ β

which implies that lim
n→∞

‖ Dα,β
n (t)− x ‖ν= 0.

Similarly, we can write for n > 1

‖ Dα,β
n (t2)− x2 ‖ν = sup

x∈[0,∞)

|Dα,β
n (t2;x)− x2|

1 + x2

≤
∣∣∣∣ n3

(n− 1)(n+ β)2
− 1

∣∣∣∣+

∣∣∣∣3n2 + 2αn(n− 1)

(n− 1)(n+ β)2

∣∣∣∣+
α2

(n+ β)2
,

which implies that lim
n→∞

‖ Dα,β
n (t2)− x2 ‖ν= 0.

This completes the proof of theorem. �

Now we give the following theorem to approximate all functions in C∗ν . Such
type of results are given in [4] for locally integrable functions.

Theorem 3.5. For each f ∈ C∗ν and ϑ > 0, we have

lim
n→∞

sup
x∈[0,∞)

|Dα,β
n (f ;x)− f(x)|
(1 + x2)1+ϑ

= 0.

Proof. For any fixed x0 > 0,

sup
x∈[0,∞)

|Dα,β
n (f ;x)− f(x)|
(1 + x2)1+ϑ

≤ sup
x≤x0

|Dα,β
n (f ;x)− f(x)|
(1 + x2)1+ϑ

+ sup
x≥x0

|Dα,β
n (f ;x)− f(x)|
(1 + x2)1+ϑ

sup
x∈[0,∞)

|Dα,β
n (f ;x)− f(x)|
(1 + x2)1+ϑ

≤ ‖ Dα,β
n (f)− f ‖C[0,x0]

+ ‖ f ‖ν sup
x≥x0

|Dα,β
n (1 + t2;x)|
(1 + x2)1+ϑ

+ sup
x≥x0

|f(x)|
(1 + x2)1+ϑ

.
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The first term of the above inequality tends to zero from Theorem 3.3. By
Lemma 2.2, for any fixed x0 > 0, it is easily prove that

sup
x≥x0

|Dα,β
n (1 + t2;x)|
(1 + x2)1+ϑ

→ 0

as n → ∞. We can choose x0 > 0 so large that the last part of the above
inequality can be small.
Hence the proof is completed. �

3.4. Pointwise Estimates. In this section, we establish some pointwise es-
timates of the rate of convergence of the operators Dα,β

n . First, we give the
relationship between the local smoothness of f and local approximation.
We know that a function f ∈ C[0,∞) is in LipM (η) on E, η ∈ (0, 1], E⊂ [0,∞)
if it satisfies the condition

|f(t)− f(x)| ≤M |t− x|η, t ∈ [0,∞) and x ∈ E,
where M is a constant depending only on η and f .

Theorem 3.6. Let f ∈ C[0,∞)∩LipM (η), E ⊂ [0,∞) and η ∈ (0, 1]. Then, we
have

|Dα,β
n (f ;x)− f(x)| ≤ M

((
ξα,βn (x)

)η/2
+ 2dη(x,E)

)
, x ∈ [0,∞),

where M is a constant depending on η and f and d(x,E) is the distance between
x and E defined as

d(x,E) = inf{|t− x| : t ∈ E}.

Proof. Let E be the closure of E in [0,∞). Then, there exists at least one point
x0 ∈ E such that

d(x,E) = |x− x0|.
By our hypothesis and the monotonicity of Dα,β

n , we get

|Dα,β
n (f ;x)− f(x)| ≤ Dα,β

n (|f(t)− f(x0)|;x) +Dα,β
n (|f(x)− f(x0)|;x)

≤ M
(
Dα,β
n (|t− x0|η;x) + |x− x0|η

)
≤ M

(
Dα,β
n (|t− x|η;x) + 2|x− x0|η

)
.

Now, applying Hölder’s inequality with p =
2

η
and q =

2

2− η
, we obtain

|Dα,β
n ((f ;x)− f(x)| ≤M

(
{Dα,β

n (|t− x|2;x)}η/2 + 2dη(x,E)
)
,

from which the desired result immediate. �
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Next, we obtain the local direct estimate of the operators defined in (3), using
the Lipschitz-type maximal function of order η introduced by B. Lenze [21] as

ω̃η(f, x) = sup
t6=x, t∈[0,∞)

|f(t)− f(x)|
|t− x|η

, x ∈ [0,∞) and η ∈ (0, 1]. (16)

Theorem 3.7. Let f ∈ CB [0,∞) and 0 < η ≤ 1. Then, for all x ∈ [0,∞) we
have

|Dα,β
n (f ;x)− f(x)| ≤ ω̃η(f, x)

(
ξα,βn (x)

)η/2
.

Proof. From the equation (16), we have

|Dα,β
n (f ;x)− f(x)| ≤ ω̃η(f, x)Dα,β

n (|t− x|η;x).

Applying the Hölder’s inequality with p =
2

η
and q =

2

2− η
, we get

|Dα,β
n (f ;x)− f(x)| ≤ ω̃η(f, x)Dα,β

n ((t− x)2;x)
η
2 ≤ ω̃η(f, x)

(
ξα,βn (x)

)η/2
.

Thus, the proof is completed. �

For a, b > 0, Özarslan and Aktuğlu [31] consider the Lipschitz-type space
with two parameters:

Lip
(a,b)
M (η) =

(
f ∈ C[0,∞) : |f(t)− f(x)| ≤M |t− x|η

(t+ ax2 + bx)η/2
; x, t ∈ [0,∞)

)
,

where M is any positive constant and 0 < η ≤ 1.

Theorem 3.8. For f ∈ Lip(a,b)
M (η). Then, for all x > 0, we have

|Dα,β
n (f ;x)− f(x)| ≤M

(
ξα,βn (x)

ax2 + bx

)η/2
.

Proof. First we prove the theorem for η = 1. Then, for f ∈ Lip
(a,b)
M (1), and

x ∈ [0,∞), we have

|Dα,β
n (f ;x)− f(x)| ≤ Dα,β

n (|f(t)− f(x)|;x)

≤ MDα,β
n

(
|t− x|

(t+ ax2 + bx)1/2
;x

)
≤ M

(ax2 + bx)1/2
Dα,β
n (|t− x|;x).

Applying Cauchy-Schwarz inequality, we get

|Dα,β
n (f ;x)− f(x)| ≤ M

(ax2 + bx)1/2

(
Dα,β
n ((t− x)2;x)

)1/2
≤ M

(
ξα,βn (x)

ax2 + bx

)1/2

.
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Thus the result holds for η = 1.

Now, we prove that the result is true for 0 < η < 1. Then, for f ∈ Lip(a,b)
M (η),

and x ∈ [0,∞), we get

|Dα,β
n (f ;x)− f(x)| ≤ M

(ax2 + bx)η/2
Dα,β
n (|t− x|η;x).

Taking p = 1
η and q = 2

2−η , applying the Hölders inequality, we have

|Dα,β
n (f ;x)− f(x)| ≤ M

(ax2 + bx)η/2
(
Dα,β
n (|t− x|;x)

)η
.

Finally by Cauchy-Schwarz inequality, we get

|Dα,β
n (f ;x)− f(x)| ≤ M

(
ξα,βn (x)

ax2 + bx

)η/2
.

Thus, the proof is completed. �

4. King’s Approach

To make the convergence faster, King [20] proposed an approach to modify
the classical Bernstein polynomial, so that the sequence preserve test functions
e0 and e2, where ei(t) = ti, i = 0, 1, 2. After this approach many researcher
contributed in this direction.
As the operator Dα,β

n (f ;x) defined in (3) preserve only the constant functions
so further modification of these operators is proposed to be made so that the
modified operators preserve the constant as well as linear functions.
For this purpose the modification of (3) is defined as

D̂α,β
n (f ;x) =

∞∑
k=1

ln,k(rn(x))

∫ ∞
0

bn,k−1(t)f

(
nt+ α

n+ β

)
dt

+2−nrn(x)f

(
α

n+ β

)
(17)

where rn(x) = (n+β)x−α
n for x ∈ In = [ α

n+β ,∞) and n > 1.

Lemma 4.1. For every x ∈ In, we have

(1) D̂α,β
n (1;x) = 1;

(2) D̂α,β
n (t;x) = x;

(3) D̂α,β
n (t2;x) =

nx2

n− 1
+

(3n− 2α)x

(n− 1)(n+ β)
+

α(α− 3n)

(n− 1)(n+ β)2
.

Consequently, for each x ∈ In, we have the following equalities

D̂α,β
n (t− x;x) = 0

D̂α,β
n ((t− x)2;x) =

x2

n− 1
+

(3n− 2α)x

(n− 1)(n+ β)
+

α(α− 3n)

(n− 1)(n+ β)2
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= λα,βn (x), (say). (18)

Theorem 4.2. For f ∈ CB(In) and n > 1, we have

|D̂α,β
n (f ;x)− f(x)| ≤M ′ω2

(
f,

√
λα,βn (x)

)
,

where λα,βn (x) is given by (18) and M ′ is a positive constant.

Proof. Let g ∈W 2 and x, t ∈ In. Using the Taylor’s expansion we have

g(t) = g(x) + (t− x)g′(x) +

∫ t

x

(t− v)g′′(v)dv.

Applying D̂α,β
n on both sides and using Lemma 4.1, we get

D̂α,β
n (g;x)− g(x) = D̂α,β

n

(∫ t

x

(t− v)g′′(v)dv;x

)
.

Obviously, we have

∣∣∣∣∫ t

x

(t− v)g′′(v)dv

∣∣∣∣ ≤ (t− x)2‖g′′‖.

Therefore

| D̂α,β
n (g;x)− g(x) |≤ D̂α,β

n ((t− x)2;x) ‖ g′′ ‖= λα,βn (x) ‖ g′′ ‖ .

Since | D̂α,β
n (f ;x) |≤ ‖f‖, we get

| D̂α,β
n (f ;x)− f(x) | ≤ | D̂α,β

n (f − g;x) | + | (f − g)(x) | + | D̂α,β
n (g;x)− g(x) |

≤ 2‖f − g‖+ λα,βn (x)‖g′′‖.

Finally, taking the infimum over all g ∈W 2 and using (10) we obtain

| D̂α,β
n (f ;x)− f(x) |≤M ′ω2

(
f,

√
λα,βn (x)

)
,

which proves the theorem. �

Theorem 4.3. Let f ∈ CB(In). If f ′, f ′′ exists at a fixed point x ∈ In, then we
have

lim
n→∞

n
(
D̂α,β
n (f ;x)− f(x)

)
=
x(x+ 3)

2
f ′′(x).

The proof follows along the lines of Theorem 3.1.
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Appl. Math. Comput. 37 (2011), 407-419.
23. V.N. Mishra, P. Sharma and M. Birou, Approximation by Modified Jain-Baskakov Oper-

ators, arXiv:1508.05309v2 [math.FA] 9 Sep 2015.



28 Alok Kumar, Vandana

24. V.N. Mishra and P. Sharma, On approximation properties of Baskakov-Schurer-Sźasz
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