• Title/Summary/Keyword: integral analogue

Search Result 47, Processing Time 0.03 seconds

SOME REMARKS ON A q-ANALOGUE OF BERNOULLI NUMBERS

  • Kim, Min-Soo;Son, Jin-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.221-236
    • /
    • 2002
  • Using the p-adic q-integral due to T. Kim[4], we define a number B*$_{n}$(q) and a polynomial B*$_{n}$(q) which are p-adic q-analogue of the ordinary Bernoulli number and Bernoulli polynomial, respectively. We investigate some properties of these. Also, we give slightly different construction of Tsumura's p-adic function $\ell$$_{p}$(u, s, $\chi$) [14] using the p-adic q-integral in [4].n [4].

OPERATOR-VALUED FUNCTION SPACE INTEGRALS VIA CONDITIONAL INTEGRALS ON AN ANALOGUE WIENER SPACE II

  • Cho, Dong Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.903-924
    • /
    • 2016
  • In the present paper, using a simple formula for the conditional expectations given a generalized conditioning function over an analogue of vector-valued Wiener space, we prove that the analytic operator-valued Feynman integrals of certain classes of functions over the space can be expressed by the conditional analytic Feynman integrals of the functions. We then provide the conditional analytic Feynman integrals of several functions which are the kernels of the analytic operator-valued Feynman integrals.

AN ANALOGUE OF WIENER MEASURE AND ITS APPLICATIONS

  • Im, Man-Kyu;Ryu, Kun-Sik
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.5
    • /
    • pp.801-819
    • /
    • 2002
  • In this note, we establish a translation theorem in an analogue of Wiener space (C[0,t],$\omega$$\phi$) and find formulas for the conditional $\omega$$\phi$-integral given by the condition X(x) = (x(to), x(t$_1$),…, x(t$_{n}$)) which is the generalization of Chang and Chang's results in 1984. Moreover, we prove a translation theorem for the conditional $\omega$$\phi$-integral.l.

THE DOBRAKOV INTEGRAL OVER PATHS

  • Ryu, Kun Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.61-68
    • /
    • 2006
  • In 2002, the author introduced the definition and its properties of an analogue of Wiener measure over paths. In this article, using these concepts, we will derive an operator-valued measure over paths and will investigate the properties for integral with respect to the measure. Specially, we will prove the Wiener integral formula for our integral and give some example of it.

  • PDF

PROBABILITIES OF ANALOGUE OF WIENER PATHS CROSSING CONTINUOUSLY DIFFERENTIABLE CURVES

  • Ryu, Kun Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.579-586
    • /
    • 2009
  • Let $\varphi$ be a complete probability measure on $\mathbb{R}$, let $m_{\varphi}$ be the analogue of Wiener measure over paths on [0, T] and let f(t) be continuously differentiable on [0, T]. In this note, we give the analogue of Wiener measure $m_{\varphi}$ of {x in C[0, T]$\mid$x(0) < f(0) and $x(s_0){\geq}f(s_{0})$ for some $s_{0}$ in [0, T]} by use of integral equation techniques. This result is a generalization of Park and Paranjape's 1974 result[1].

  • PDF

INTEGRATION WITH RESPECT TO ANALOGUE OF WIENER MEASURE OVER PATHS IN WIENER SPACE AND ITS APPLICATIONS

  • Ryu, Kun-Sik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.131-149
    • /
    • 2010
  • In 1992, the author introduced the definition and the properties of Wiener measure over paths in Wiener space and this measure was investigated extensively by some mathematicians. In 2002, the author and Dr. Im presented an article for analogue of Wiener measure and its applications which is the generalized theory of Wiener measure theory. In this note, we will derive the analogue of Wiener measure over paths in Wiener space and establish two integration formulae, one is similar to the Wiener integration formula and another is similar to simple formula for conditional Wiener integral. Furthermore, we will give some examples for our formulae.

RELATIONSHIPS BETWEEN INTEGRAL TRANSFORMS AND CONVOLUTIONS ON AN ANALOGUE OF WIENER SPACE

  • Cho, Dong Hyun
    • Honam Mathematical Journal
    • /
    • v.35 no.1
    • /
    • pp.51-71
    • /
    • 2013
  • In the present paper, we evaluate the analytic conditional Fourier-Feynman transforms and convolution products of unbounded function which is the product of the cylinder function and the function in a Banach algebra which is defined on an analogue o Wiener space and useful in the Feynman integration theories and quantum mechanics. We then investigate the inverse transforms of the function with their relationships and finally prove that th analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions, can be expressed in terms of the product of the conditional Fourier-Feynman transforms of each function.