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INTEGRATION WITH RESPECT TO ANALOGUE OF
WIENER MEASURE OVER PATHS IN ABSTRACT WIENER
SPACE AND ITS APPLICATIONS

KuN Sik Ryu

ABSTRACT. In 1992, the author introduced the definition and the proper-
ties of Wiener measure over paths in abstract Wiener space and this mea-
sure was investigated extensively by some mathematicians. In 2002, the
author and Dr. Im presented an article for analogue of Wiener measure
and its applications which is the generalized theory of Wiener measure
theory. In this note, we will derive the analogue of Wiener measure over
paths in abstract Wiener space and establish two integration formulae,
one is similar to the Wiener integration formula and another is similar
to simple formula for conditional Wiener integral. Furthermore, we will
give some examples for our formulae.

1. Introduction

In 1827, Robert Brown, the British botanist, observed the motions of small
particles while viewing pollen suspended in water through a microscope [18].
This motion is called the Brownian motion. He hypothesized that this move-
ment was either due to a particular phenomenon of living matter or the power
source of life. As a result, the novelty was investigated extensively by many
scientists of the time, among whom were Cantoni, Oehl, Delsaux, Exner and
Guoy. The results of these studies showed that Brown’s original hypotheses
were wrong and Brownian motion is very irregular and rapid.

In 1905, Albert Einstein suggested a probabilistic approach to Brownian mo-
tion in his paper that is associated with the special theory of relativity. By 1923,
Wiener had established a theory for the reasonable probability measure m,,,
the one-dimensional Wiener measure, on the space Cyla,b] of all real-valued
continuous functions on a closed bounded interval [a, b] that vanish at the ini-
tial point a [19]. One dimensional Wiener measure space satisfies Einstein’s
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suggestion, as well as, the results of related scientists. Since then, the theory
of this measure has been studied by many mathematicians and many mathe-
matical physicists, such as Carmeron, Martin, Kac, Skoug, Johnson, Lapidus,
Chang, etc, and applied to various objects.

In 1965, Gross presented the theory for the abstract Wiener measure w
on B, the infinite dimensional real separable Banach space [4]. The concrete
Wiener space Cypla,b] is an example of abstract Wiener space and the mea-
sure space (B,w) is a typical measure space on infinite dimensional Banach
space. In 1973, Kuelb and LePage claimed the existence of non-zero, stationary-
increment Gaussian measure m® over paths in abstract Wiener space Cp(B),
the space of all B-valued continuous functions on [a,b] that vanish at a [13].
In 1992, the author established the existence of such a measure m2, found the
integration formula for it, similar to Wiener integration formula and applied to
the theory of an operator-valued function space integral [13, 17].

In 2002, the author and Professor Im defined the analogue of Wiener measure
w, on the space Cla,b], the space of all real-valued continuous functions on
[a, b], associated with a complex Borel measure ¢ on R [5, 14, 15, 16]. Indeed,
if we take ¢ = Jp, the Dirac measure at the origin 0 in R, w, is the concrete
Wiener measure m,,. This theory is the theory of many particles such that
each particle moves under the Brownian process. For simplicity, we ignore the
collision between particles in this article.

In this article, we introduce an analogue of Wiener measure m]i on C(B),
the space of all B-valued continuous functions on [a, b], associated with a Borel
measure ¢ on B. Indeed, if ¢ is the Dirac measure dy at the origin, mi]i is the
concrete Wiener measure m® on Cy(B). We describe the various properties of
the analogue of Wiener measure mg in Section 2. In Section 3, we derive the
measure-valued measure VWX on C(B), associated with the random variable X
on C(B) and a Borel measure ¢ on B; establish two integration formulae, one is
similar to the Wiener integration formula and another is similar to the simple
formula for conditional expectation. We give some examples for our formulae
in Section 4.

B

2. Analogue of Wiener measure m,

on the space of paths in B

In this section, we establish the existence of analogue of Wiener measure mi‘i

on the space of paths in an arbitrary abstract Wiener space B and investigate
the various properties of it.

Let B be an infinite dimensional real separable Banach space and let (B, B(B),
w) be an abstract Wiener measure space, associated with the measurable norm
I - [l [7]. For positive real number A, let wy be a Borel measure on B given by

(1) wA(B) = w(A\™'B)
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for Borel subsets B of B. For two Borel measures p and v, the convolution
measure p* v of y and v is given by

(2) pwxv(B)=puxv({(z,y) in BxB|z+yisin B})
for Borel subsets B of B. Then for two positive real numbers s and ¢,

(3) Ws ¥ Wy = W /oo yz

and p * dg = p where dg is the Dirac measure at the origin in B. Let B* be the
dual space of B.

Let a and b be two real numbers with a < b. Let C(B) denote the space
of all B-valued continuous functions on a closed bounded interval [a,b]. Then
C(B) is a real separable Banach space in the norm ||y||c®) = sup,<;< |[y(t)||B-

Let ¢ = (to,t1,...,tn) be given with a = tg < t; <ty <--- <t, <band let
T+ :B"*! — B"*! be a function given by

n
(4) T7(x0,a:1,...,xn) = ($0,$0+\/t1 —to .731,...,%‘0—1—2(\/15]' —tj_l x]))
j=1

Let ¢ be a non-negative finite measure on (B, 5(B)). We define a set function
1/% on B(B"*1) given by

(5) V%(B):/B[/TLXBOT7(x0,x1,...,mn) AT ) s dipo).

where xp is a characteristic function associated with B. Then y% is a Borel
measure on (B"*!, B(B"*!)). Let J- : C(B) — B"*! be a function with

(6) J7 () = (y(to), y(t1), - y(tn)).

For Borel subsets By, By, ..., B, in B(B), the subset J%I(H?:o B;) of C(B)
is called an interval. Let Z be the set of all such intervals. Then 7 is an
semi-algebra. We define a set function M, on Z by

n n

(7) M (1ML B = v2([] B)).

=0 =0

Then (xg,1,...,%,) is in T%l(]_[;lzo B;) if and only if for k = 1,2,...,n, 2
is in By and zg + Z?Zl(,/tj —1t;_1 x;) is in By, so, we have
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® A m)

/ /HHXB $0+Z by = ti- 1xz))d(ﬁw)(az17...,mn)]

XX B, (T0)dp(z0)-

Theorem 2.1. M, is well-defined on Z.

Proof. There is a minimal representation for an interval I = J%l (H;I o Bj) as

in (7). Any alternate representation for I must involve additional points. We
will show that, in the case of one additional point, the corresponding formula
for M, (I) agrees with the formula associated with the minimal representation
for M,(I). The case of N additional points can be done by applying the
procedure below N times. Suppose that the interval I = J%l(l_[?zo B;) is the
minimal representation and that the extra point, say s, satisfies t, < s < tx41
for some k =0,1,...,n— 1. Let I* = {y in C(B)| for j =0,1,...,n, y(t;) is
in Bj and y(s) is in B} and let X} =z + Zle(m x;). Then

n—=k
9) /B[/BH xB( Xk + Vs — tr ) HXBM(X,ﬁHIS

k+u
TV tkr1 — 8 Ty + Z Vit —tio1 ;)
j=k+2

n—k
d(H W (Tt 1, T2, - - -5 Tp) | dw(@5)
j=1

. k+u
(:1) / / Xk—i—;vs HXBIH—“ Xk+$s+xk+1+ Z l'j
Bn—k ihio
n—k—1
dwymm= > | wvarm=a) @ @ria, o)) | dw s (z,)
u=1
(i) n—k k+u
B /E e Kt e+ D0 2)d((@smg <0y
u=1 j=k+2

—k—

H Viktutl—thtu tk+u))(x*a ($k+2, s ,ch))

u=1

k+u

—k—1
(i) /B - H XBor (X + 2"+ Y ay)

u=1 j=k+2
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n—k
d( [T wymromn) @ zira, o 20)
u=0
(iv) n—=k k+u—1 n—=k
= /B . H XBk:+u(Xk + Z (\/tj+1 — tj xj+1))d( H w)(xk+1,. .. ,xn).
T u=1 j=k j=1

Step (i) and (iv) follow from the change of variables theorem in [9] and (1).
Step (ii) results from (2). By (3), we obtain Step (iii). Using (8) and (9), we
can easily show that M, (I) = M,(I*), as desired. O

By the essentially same method as in the proofs of Theorem 2.1 and The-
orem 5.1 in [11], B(C(B)), the set of all Borel subsets of C'(B), coincides with
smallest o-algebra generated by Z and there exists a unique measure mi]i on
(C(B), B(C(B))) such that m(I) = M,(I) for all I in Z.

From the change of variables theorem, we have the following theorems which
is one of main theorems.

Theorem 2.2 (The Wiener integration formula). If f : B"*! — R is a Borel
measurable function, then following equality holds;

(10) f(y(tO)v y(tl)v ce 7y(tn))dmg(y)
C(B)

l /B[/n(foT7)(x0,g:1,...,zn)d(jlillw)(xl,zg,...,xn)]dga(xo)

where = means that if one side exists, then both sides exist and the two values
are equal.

Remark 2.3. (1) Let 1 and o be two finite non-negative Borel measures on
(B,B(B)) and let o and 3 be two non-negative real numbers. Then, letting
p = ap + By, mE = amilil —|—ﬂm§;2.

(2) For a finite non-negative Borel measure ¢ on (B, B(B)), m;(C(B)) =
@(B), if ¢ is a probability measure on (B, B(B)), then my, is also a probability
measure.

(3) Let M(B) and M(C(B)) be the space of all finite complex-valued count-
ably additive measures on (B, B(B)) and (C(B), B(C(B))), respectively. Then
M(B) and M(C(B)) are two Banach space with respect to its total variation
norm. For ¢ in M(B) with the Jordan decomposition ¢ = @1 — s +ip3 — i@y,
we let mg = mgl EZ ; ES — im&. Then mg is well-defined. Further-
more, let a function m® : M(B) — M(C(B)) be given by m® () = m, m® is
a bounded linear operator by bound 4, in the operator norm sense.

Theorem 2.4. For a < s <b and for a non-zero element b* of B*,

(11)  my({y in CB)" (y(s)) < a})
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= exp{ - M}d@(mo)]dmL(v)

s —a) || o* [|-

27(s — a)
for any real number o, where my, is the Lebesgue measure on R.

Proof. For a < s < b, for a non-zero b* in B* and for real number a,
(12)  mg({y in C(B)|" (y(s)) < a})
@)
/ Xb 1 ((—o0.0) (U(8))dm (y)
C(B)

(:2) /]B [/Bxb*_l((—oqoz))(xo + mml)dw(‘rl)] dip(zo)

(3) *
= /]B[/BX(foo,ﬁ(afb*(zo)))b (21)dw(z1)]de(z0)

u?

L (a—b"(x0))
@ Va=a 1
B /]B{[w Nod p{ 2 b |2 }dmL ]dSO(xO)

« 1 (v —b*(x9))?
/_w[/Bm| b [ eXp{‘z( a) [0 2.

Step (1) and (3) obtain from the elementary calculus. By the Wiener integra-
tion formula for m7, we have Step (2). Step (4) results from the formula in [7].
By substituting v = v/s — au + b*(z¢) and the Fubini theorem, we have Step

(5)-

Hence, the theorem is proved. ([

—~
ot
=

(o) | dmy (v).

From Theorem 2.4 in the above, we have the following corollaries.

Corollary 2.5. If a < s < b, b* is a non-zero element of B*, ¢ = g and
W(y) = b*(y(s)), then W has a normal distribution with mean 0 and variation

(s —a) | b
Corollary 2.6. Ifa < s < b, b* is a non-zero element of B*, p = w and
b*(y(s)) = W(y), then W has a normal distribution with mean 0 and variation
(1+s—a)| b*[3..

2
B* -

Proof. For any real number «,
(13)  mE({y in C(B)|W(y) < a})
N e e a2
(v— U)2

. e 1
/—oo {/—oo Vv e e T B

2

(o) dme (v)

1 U
X——exp{—=———— }dw(ug) |dmp (v
v P Rt
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o 1 U2
= exp{— " dmp(v).
/_oo\/27r(1+s—a)||b*m;* { 21+s—a)b %*} )
Hence, the corollary is proved. O

Theorem 2.7. Let Wi(y) = y(t) for a < t < b. Then W; has stationary
increment.

Proof. Suppose s > 0 and t1,t2,t1 + s and ta+ s are in [a, b] with ¢; < ta. Then
for B in B(B),

(14) mg({y in C(B)|[Wi,+s(y) — Wi, 4s(y) is in B})
[ o= ot dota)

— mE({y in CB)y(tz) — y(tr) is in BY).
Hence, the theorem is proved. 0

Theorem 2.8. If a <t; <ty <tz <b and By and By are both in B(B), then
(15) @(B)m;({y in C(B)|y(t2) —y(t1) is in By and y(ts) —y(t2) is in Bs})
= mE({y in C(B)|y(te) —y(t1) is in By})
xmg({y in C(B)|y(ts) — y(t2) is in Ba}).
Proof. For a <t1 <ty <tz <band By and Bs in B(B)
(16) mili({y in C(B)|y(t2) — y(t1) is in By and y(t3) — y(t2) is in Ba})

/ x5 (W(t2) — y(t2) X5 (u(ts) — (t2))dmE(y)
C(B)

/ [/ XB, (Vt2 — t1x2)X B, (Vts — tax3)
B BxBxB

dw X w X w(x, T, $3)]d<p(gc0)

= By g (B1)w g (B2)
and

my({y in C(B)|y(t2) —y(t1) is in Bi})
xmE({y in C(B)|y(ts) — y(t2) is in Bs})

- / x5 (y(t2) — y(t2))dmB (1) / X (u(ts) — y(t))dmB ()
C(B) C(B)

= /[/XBl(m$2)dw($2)]dg0($o)
B B
[ xon V=Tt ot
B B

= ¢(B)’w i (B)w /= (Be).
Hence, the theorem is proved. O
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By the essentially similar method as in the above, we can prove the following
theorem.

Theorem 2.9. Ifa <t <ty <tz <ty <band By and Bs are both in B(B),

(17)  oB)m,({y in C(B)|y(t2) — y(t1) is in By and y(ts) — y(ts) is in By})
= mi‘i({y in C(B)|y(t2) —y(t1) is in By})
mg({y in C(B)ly(ts) —y(ts) is in Ba}).

Remark 2.10. If ¢ is a probability measure on (B,B(B)) and a < t; < t2 <
ts <tqg <b, y(tz) — y(t1) and y(t4) — y(t3) are stochastically independent.

Theorem 2.11. If [ || = || de(x) is finite, then F(y) =y is Bochner integrable
on C(B) and

(18) (Bo) - /C ydm? (y) = (By) — / rde(a).

Proof. Let D be the set of all rational numbers in [a,b]. Then we can write
D = {u, | n is a natural numbers}. For a natural number m, let D,, =
{u1,us,...,um}. Then by the monotone convergence theorem,

(19) / 1y Nl dmB ()
c(B)

/C sup || y(u) s dm®(y)

(B) ueD

/ lim sup || y(u) ||s dmlj'i(y)
c D

(B) M ueDy,

lim sup || y(u) [|ls dm(y)
m—0oQ C(]B) UEDm

= lim [/ sup || Vu — az1 + x || dw(zy)]de(zo)
B JB

Vb ap(B) / 21 || do(zr) + / I 20 || d(zo).
B B

Since [ || 1 || dw(x1) is finite by Fernique’s theorem [3], the right side of (19)
is finite, so fC(B) | v llc® dmg(y) is finite. Since F is weakly measurable
and C(B) is separable, by Pettis measurability theorem in [2], F' is strongly
measurable. Hence, from Theorem 2 in [2], F' is Bochner integrable.

Now, if b* is a non-zero element of B* and a < s < b then putting T'(y) =
b*(y(s)), T is a bounded linear functional, so

(200 T((Bo) - /C o, V)

IN

S
C

~
S
N
N—
Q
3
€ &=
—~
N
N—
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—~
)
-

c(

/
B /B[ (u—b(a >>
/

—
=

(u) | dp(xo)

B)
/_mmn e TPV s ey

)
b*(wo)dp(zo
B

—
N
N2

b*(y(s))dmy(y)
) )

—
=

*((Bo) —/ondgo(:ro)).

Step(1) follows from Theorem 6 in [2]. From the definition of T, we have
Step(2). By Theorem 2.4, we obtain Step(3). Using the elementary calculus,
we have Step(4). Step(5 ) results from the assumption and Theorem 2 in [2].
Hence (By) fC(B) ydm(y) = (Bo) — [ zdp(x). O

Notation 2.12. For y in C(B), let

l( ZX[fJ L (8) y(ti—1)+ &(y(tj)_y(tjfl))]‘H/(b)X{b}(s)

t—t;4
for s in [a, b].

For (ug, u1,...,u,) € B"*1 let

@2 [0(5) = 2 X1 9) o + 7y = )] i (9

for s in [a, b].

Theorem 2.13. Let ¢ be a probability measure on (B, B(B)). Let a =ty <
< - <8y <tjp <5< t; <8y < - <tp, =0band let b* be a non-zero
element of B*. Let X, Y and Z be three functions from C(B) into R with
X(y) =0"(y(s) — [yl(s)), Y(y) = b"(y(s1)) and Z(y) = b*(y(s2)). Then X and

Y are stochastically independent and X and Z are stochastically independent.
Proof. By Theorem 2.4, letting A =
(23) E(exp{iAX})

[ P~ )} )

X / [ [ estiny/s=Em S )

/=520 (1)) blo(s)de(v2) o (01 dip ()

tj—t; 1

— /}Bexp{i)\b* (Av)}dw(v)
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Hence X is normal distributed with mean 0 and variance

And
(24)

and

(25)
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1 T
exp{idx exp{— dmp(x
/R PUATY T ., Pz o . )
1 *
exp{~ 547 || b |2 N7},
(t;—s)(s—tj—1)

tj—tj71

E(exp{i\Y'})
/ exp{iAb* (y(Sl))}de(y)
C(B)

/B (/Bexp{i)\b*(vo) + iAb*(v/s1 — avy) bdw(v1)) dep(vo)

exp{—5 (s =) [ 1" 3 X} [ expind* (o)} (uo)

E(exp{i\Z})
/ exp{iAb* (y(s2)) }dmE (y)
C(B)

/ (/exp{i)\b*(vo) + b*(V/s2 — avy) dw(v1) ) de(vo)
B JB

exp{—g(s2 = a) [ b [B- ) [ exp{ind* () do(uo).

By the basic calculation,
E(eXp{i/\lX + 'L)\QY})

/ exp{id (b (y(s)) — b (o] (s >>>+m2b*<y<s1>>}dmi‘i<y>
C(B)

LLLL oo =

(26)

_b*(ﬁ(s iz 1)114))+Z)\2 b*(vo + v/s1 — avi)}

ti—ti

dw(vg)dw(vs)dw(ve)dw(vy)dp(vg)
/Bexp{i)\lb*(Av)}dw(v)/Bexp{i)\gb*(\/mvl)}dw(vl)
X/]Bexp{z')\gb*(vo)}dap(vo)

exp{f%A2 || b* ||]% )\%}exp{f%(sl —a) | b ||121¥ )\g}

X /B exp{id2b™ (vo) }dp(vo)

16" 13- -
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and
(27) E(exp{iM X +iXZ})
= / exp{idi (0% (y(s)) — b*([yl(s))) + iA2b™ (y(s2)) Ydmg (y)
C(B)
= /////exp{z)\ b*( 5 j_;](tl_s)vz)
—b*( tjt-s(st ti1) v3)) + A" (vo + \/tj—1 — avy
++/S — tj_lvg + \/tj — SU3 + /8 — tj’U4)}
dw(v4)dw(vs)dw(ve)dw(vy)de(vg)
= exp{— 40" |3 M expl—g(s2 —a) | B |- A3)
X/Bexp{i)\gb*(vo)}dga(vo).
Hence,
E(exp{iM X +iXY}) = E(exp{i\1 X })E(exp{iA2Y})
and

E(exp{iM X +iX2Z}) = E(exp{i\1 X })E(exp{i\2Z}).

From [8], X and Y are stochastically independent and X and Z are stochasti-
cally independent. O

3. The measure-valued measure Vq;X on (C(B),B(C(B)))

Using the concept of conditional expectation in [15], Ryu and Im derived a
measure-valued measure Vf and they found the integration formula for Vf
on the analogue of Wiener measure space (Cla,b],w,). In this section, we
define a measure-valued measure V* on (C(B), B(C(B))), associated with the
measurable function X and find two integration formulae with respect to Vf .

Let X : C(B) — B"*! be a Borel measurable function. For B in B(C(B))
and for E in B(B"), we let

(28) VX (B)(E) =mg(BNX(E)).

Then for B in B(C(B)), V.X(B) is a measure on (B"*!, B(B"*')) and V* :
B(C(B)) — M(B"*!), where M(B"*!) is the space of Borel measures on B"+1,
is a measure-valued measure in the total variation norm sense, clearly.
Define a measure Py on (B"*1 B(B"*!)) determined by X as follows;

(29) Px(B) = mg(X~(E))
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for E in B(B"T1).
Let F : C(B) — R be a m-integrable function. For E in B(B"*!), we let

(30) uey= [ Pwaniw)

Then p is a Borel measure on B"*! and p is absolutely continuous with respect
to Px. So, by the Radon-Nikodym theorem, there is a B(B"*!)-measurable
and Px-integrable function f on B"*! such that

o0 [ i) =

n(E)
/ fzo,x1,...,2n)dPx(x0,21,...,Zp)
E

for E in B(B"T1).
When ¢ is a probability Borel measure on B(B), f is called the conditional
expectation of F' given X and is denoted by E¥(F|X) in [15].

Theorem 3.1. For all E in B(B"™Y) and for mE-int@gmble function F, the
following equality holds

@ wa- [ Feafwle= [ | Feao)

where (Ba) — fC(B) F(y)de(y) is the Bartle integral.

Proof. Let F = xp where B is in B(C(B)). Then for E in B(B"*!),

(33) [ FOMMEG) = w30 X7 ()
S AG)

If F' is a simple function, then by the basic properties of the Lebesgue integral
and the Bartle integral, the equality (32) holds. Suppose F is mg-integrable.
Then there is an increasing sequence (F,) of simple functions such that (F,)
converges to F' m3-a.e., and lim, o Jow Fo(y)dmé(y) = Jowm F(y)dm(y).
Then for n > m,

(34) | (Ba) - /C o BV ()~ (Ba) - /C o En W)

— || (Ba) - /C ()~ Ea) VS )|

- / (Fuly) = Fn(y))dm? (y)
C(B)
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so, ((Ba) — fC(B) Fo(y)dV; (y)) is Cauchy in the total variation norm sense.
By the definition of Bartle integral,

(Ba) /C o, OV W) = lim (5) ~ /C L Fa W)

n—oo

where the convergence means the convergence in the total variation norm sense.
Hence, for E in B(B"*!),

(35) [(Ba) - /C o, P @)

n—oo

~ [ (Bo)- [ o POV W](E)

— lim [(Ba) /C o, PV @) ()

n—oo

= lim Fn(y)dmiB;(y)
T JX-N(E)

= [ Fuami)
X-1(E)
as desired. O

From Theorem 2.2 and Theorem 3.1, we have directly the following theorem.

Theorem 3.2 (The Wiener integration formula). Suppose for k=1,2,...,

i, 1S a monnegative integer such that m = n + Z;L=1 ij +1 and a = 1

to0 < to1 < too < - < oy, < t1 = tou41 = tio <l < tro < -

th1,i, <tph =tn_1,i,41 = b and for j =1,2,...,n, Up,0 = U0,0 and Uj—1,0
j—2 bet1+1

0,0 + Dl g o Ve — Tef—tte s + 2 foo V1 f — Gt - 1uj—1,5-

f:B™ — R is a Borel measurable function then the following equality holds;

3

7

A

=

(36) (B0~ [ f0lton) ylto)s- . pltnri, 1)V ) E)
C(B)
= /B[/Bmil f('ao,Oa'aO,la-~-aan—l,in—&-l)};IOXE[g](ﬂg,O)
m—1
d( H W) (10,0, 10,15 -+, Un—1,i,+1) | dip(u0,0),
=1

where El9) is the g**-section of E.

When using (36) in the above, we calculate an integral of various functions,
with respect to Vs;] ? we meet too the difficult problems frequently, so we can

need more a simple formula for integral with respect to V;,] “ which is one of
main theorems. Indeed, at 1988, Park and Skoug proved the simple formula for
conditional expectation in the concrete Wiener case in [10] and at 2008, D. H.
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Cho established the simple formula for conditional expectation in Cy(B) case
[1]. Our result is very similar to previous results but the process of its proof is
not quite same.

Theorem 3.3 (The simple formula for conditional expectation). Let ¢ be a
Borel probability measure on B and let F' be mi‘i-integmble on C(B). Then for
E in B(B"1),

(37) [(Ba) - /C o P ] )

/ L Fly)dmg(y)
I

= [ ([ P+ @pdmEw)irsa
B Jom)
Proof. Let A be in B(C(B")) and let F' = y4. Then for F in B(B"1),

69 [ Pwdnie) = mians )
JZ(E)

/EF|J~ 7)dP. (i)

- /E E(F(y — [y] + [@))|J3) (@) APy, (7).

From Theorem 2.13, y — [y] and Ji(y) are weakly stochastically independent.
Since B is separable, by [12], y — [y] and J¢{(y) are stochastically independent.
Hence

oly) = - i (D).
CUN | gy FA ) = [ B =+ )P

Thus, the result holds for the characteristic function of E in B(C(B)). The
general case follows by the usual arguments in Bartle integration theory. [

4. Examples and applications
In this section, we give the various examples for our theorems.

Example 4.1 (The absolutely continuity). Let ¢ and ¢ be two finite positive
Borel measures on B. Then ¢ is absolutely continuous with respect to ¢ if and

£ = 2(y(0)).

Suppose that ¢ is absolutely continuous with respect to 1/1 Then there is a

only if m]g; is absolutely continuous with respect to mﬁ

measurable function g : B — R such that for E in B f E g(z
Let py @ B(C(B)) — R be a function with (B fBg dmw( ) for
B in B(C(B)). Then [ |g(y(0 Nldmig(y) = fB |g(x)|dy(x), so g is my-

integrable. Hence g, is a Borel measure on C(B). Consider a set J = {B
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in B(C(B))|m(B) = py(B)}. Then by the Radon-Nykodym theorem, Z C

J. By the routine method as in the measure theory, J is a o-algebra, so

B(C(B)) = J. Thus, we have m_(B) = fC(B) 9(y(0))dmi (y).

Now, we assume that miﬂg is absolutely continuous with respect to mﬁ and N is

a Borel subset with 1/)( ) =0. Let Jp : C(B) — B be a function with Jy(y) =
y(0). Then mE (J; ' (N)) = fy v (2)dib() = 0, s0 mE(Jy (V) = p(N) =0,

that is, ¢ is absolutely contmuoub with respect to .

Example 4.2 (The scale-invariant measurability). We can establish the exis-
tence of scale-invariant measurable subsets in C(B).

Given partition Hn of la,b; a = 1§ <1 < --- <1p,) =bwith u(][,) =

mMaxg < p<i(n) |t 1| — 0 asn — 4oo and y in C(B), let SH (y) = ijl I
y(t5) —y(t] ) 2. By [11], f5 | @ |3 dw(z) and [; || = HB dw(z) are finite. Let

a=(b-a)fylz|ido(z)and § = [ || v |f do(a) =(fy | @ | dw(a))”.
Then Theorem 2.2,

/ St (v)dm® (y)
C(B)

k(n)
ST S OV e
]B n
k(n)
+Z\/ =t z) B d( [ w) (@1, 22, . 2] o)
j=1

P [ 15 B AL ) onan )
Bk (n)

and

/ (St () — @)2dmP (y)
C(B)

k(n) k(n)

- / Lo 0 =60 ey P[] @) @nmae i)
Bk(n) .
Jj=1 j=1
di(zo) — a’p(B)
k(n) k(n)
= B )~ ) [ 2 dote)’
p=1 g=1

B)BY (tp —tp_1)* — a’p(B)
p=1
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= BB Y (ty —th_1)*

By the definition of Riemann integral f; xdx, we have lim,, . (7 )0 Zk(n)

(ty —t5_ kl) = 0, so we can choose a subsequence ([],,,) of (Hn> such that
Zn 12 Mgt - Z(n)) is finite, that is, 3°,7 1 [0 (STL, ., (V) —@)? dmf(y)

e(B)BY ", Zk(g ) (49 _ ”(nl)) is finite. From [9], there is a subsequence

< *(n)) of (¢(n)) such that lim, .o Spy . (y) = a for mg-a.e. y.
For A > 0, let
A= {yin O(B)] lm Sy () = Ma)
and let

D* = {y in C(B)| the limit lim S, ) (y) doesn’t exist}.

Then for two positive real numbers A; and A2, MQyx, = Qxn,, Q2 (A > 0)
and D* are Borel subsets, C(B) is the disjoint union of the sets Q) (A > 0)
and D* and mE(Q,\) = 0 if and only if \ # 1.

For A > 0, we define a Borel measure m{, , on B(C(B)) by m \(B) =
mg (A" B).

For A > 0, let (B, B(C(B))x,m ) be the completion of (B, B(C(B)),m ,).
Let S = Nx>0oB(C(B))x. The element of S is called the scale-invariant measur-
able subset of C'(B). Then for A > 0, B(C(B)) ; S ; B(C(B))a.

By the elementary calculus and Theorem 2.4, directly we have the following
example for the convolution.

Example 4.3 (The convolution). Let ¢ and ¢ be two positive finite Borel
measures on (B, B(B)). Let p and ¢ be two positive real numbers. Then m2

o.p*
My =m s on B(C(B)).
Let By, Bi,...,B, be in B(B). Then

m iy o (7 (] B))
3=0

= mgp X mqu({(x,y) in C(B) x C(B)|z+y is in thl(H Bj) })
§=0

-/ N1 5, (el + y))dmE , x mE, (2,1)
C(B)xC(B)

-/ NI, 2, (2(to) + y(to), () + (). - 2(ta) + y(ta)
C(B)xC(B)
d B B

Mg, X mw’q(gmy)
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= //[/ / XH;ZOBJ($0+y0,$0+Z/0+\/t1—to($1+y1),-~-,
IB IB n n
To + Yo + Z Vit — tj_1($j + y]))d(H wp)(ml,xg, - ,l‘n)
j=1 j=1

d(H Wq)(yla Y2, 7yn)] d@(%ﬂ‘/’(%)

n
= /[/ XH;;OBJ-(ZOJOJFVH*toZ1,---,Zo+Z\/tj*tj—lzj)
B JB» ;
Jj=1

d(li[l wm)(zl, 22, .., zn)]d(cp * 1) (20)

B -1 _
RSl (J_I:IO B;)).

: I B B _ B
Consider a set K = {E in B(C(B))|mg, , *my, ,(E) = mw*w\/m(E)}. Then
K is a monotone class containing all intervals in C'(B), so, K = B(C(B)).

Example 4.4. Let ¢ be a probability measure on (B, B(B)) and let b* be a
non-zero element of B*. Let t;_; < s <t¢;. Then b*(y(s)) is V;{—integrable and

(40) B (5 (y(5))15) (o - )
=[w@—4®wmmw#@w%quw>
= )+ e )

For E in B(B"*1),

[B@—mewwﬂﬁwhﬂ

[ ] v - ble) + @)k s,
EJo®)

/ / b*[($0+\/t1—t0$1+"'+ s—tj,lxs)
E JBi+1

s—1;_
_#(mo—l—m{blﬂ-”'ﬂ- s —tj12s +\/tj — s25)
it
tj—s
_#(onr\/HmlJr---er%—l)
it
s—t;_ tj—s
+ j—1 4 Uj_l}dSD(IEO)

u
ti—tio1 7t —tj
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Jj+1
Hw T1,T2,. .., L — 1,xs,xj)dPJ{(ﬁ)

IS ”éb*(xs“(S_Z‘i)tffs)%b*mj)
.

§—tj1 ti—s o,
— =" ——b"(uj_1)|d
T ) + b ()] dgao)
2
d(] [ w)(@s, z;)dP;,(i0)
J=1
S — tj_l % tj — S « -
= | (R ) + b () AP (),
E Ui —b-1 J— bi-1

so the example is proved.
Using Example 4.4 in above, we have the following theorem.

Example 4.5. Under the hypothesis in Example 4.4, if
FO) = [ 0 e)dme ).
[ab]
then F is VWJ “_integrable and from (40),

(41) [(Ba) - / Fy)avy(y)] (E)
C(B)
SR b )+ 30— )b P
B
for E in B(B"*!), so

/ b (y(s))dma () J5) (s it -« - )

(tr — to—1)b" (ug) + %(tk — tk—l)b*(uk—l)}-

l\J\»—t

n
k:l
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