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INTEGRATION WITH RESPECT TO ANALOGUE OF
WIENER MEASURE OVER PATHS IN ABSTRACT WIENER

SPACE AND ITS APPLICATIONS

Kun Sik Ryu

Abstract. In 1992, the author introduced the definition and the proper-
ties of Wiener measure over paths in abstract Wiener space and this mea-
sure was investigated extensively by some mathematicians. In 2002, the
author and Dr. Im presented an article for analogue of Wiener measure
and its applications which is the generalized theory of Wiener measure
theory. In this note, we will derive the analogue of Wiener measure over
paths in abstract Wiener space and establish two integration formulae,
one is similar to the Wiener integration formula and another is similar
to simple formula for conditional Wiener integral. Furthermore, we will
give some examples for our formulae.

1. Introduction

In 1827, Robert Brown, the British botanist, observed the motions of small
particles while viewing pollen suspended in water through a microscope [18].
This motion is called the Brownian motion. He hypothesized that this move-
ment was either due to a particular phenomenon of living matter or the power
source of life. As a result, the novelty was investigated extensively by many
scientists of the time, among whom were Cantoni, Oehl, Delsaux, Exner and
Guoy. The results of these studies showed that Brown’s original hypotheses
were wrong and Brownian motion is very irregular and rapid.

In 1905, Albert Einstein suggested a probabilistic approach to Brownian mo-
tion in his paper that is associated with the special theory of relativity. By 1923,
Wiener had established a theory for the reasonable probability measure mw,
the one-dimensional Wiener measure, on the space C0[a, b] of all real-valued
continuous functions on a closed bounded interval [a, b] that vanish at the ini-
tial point a [19]. One dimensional Wiener measure space satisfies Einstein’s
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suggestion, as well as, the results of related scientists. Since then, the theory
of this measure has been studied by many mathematicians and many mathe-
matical physicists, such as Carmeron, Martin, Kac, Skoug, Johnson, Lapidus,
Chang, etc, and applied to various objects.

In 1965, Gross presented the theory for the abstract Wiener measure ω
on B, the infinite dimensional real separable Banach space [4]. The concrete
Wiener space C0[a, b] is an example of abstract Wiener space and the mea-
sure space (B, ω) is a typical measure space on infinite dimensional Banach
space. In 1973, Kuelb and LePage claimed the existence of non-zero, stationary-
increment Gaussian measure mB over paths in abstract Wiener space C0(B),
the space of all B-valued continuous functions on [a, b] that vanish at a [13].
In 1992, the author established the existence of such a measure mB, found the
integration formula for it, similar to Wiener integration formula and applied to
the theory of an operator-valued function space integral [13, 17].

In 2002, the author and Professor Im defined the analogue of Wiener measure
ωϕ on the space C[a, b], the space of all real-valued continuous functions on
[a, b], associated with a complex Borel measure ϕ on R [5, 14, 15, 16]. Indeed,
if we take ϕ = δ0, the Dirac measure at the origin 0 in R, ωϕ is the concrete
Wiener measure mw. This theory is the theory of many particles such that
each particle moves under the Brownian process. For simplicity, we ignore the
collision between particles in this article.

In this article, we introduce an analogue of Wiener measure mBϕ on C(B),
the space of all B-valued continuous functions on [a, b], associated with a Borel
measure ϕ on B. Indeed, if ϕ is the Dirac measure δ0 at the origin, mBϕ is the
concrete Wiener measure mB on C0(B). We describe the various properties of
the analogue of Wiener measure mBϕ in Section 2. In Section 3, we derive the
measure-valued measure V Xϕ on C(B), associated with the random variable X
on C(B) and a Borel measure ϕ on B; establish two integration formulae, one is
similar to the Wiener integration formula and another is similar to the simple
formula for conditional expectation. We give some examples for our formulae
in Section 4.

2. Analogue of Wiener measure mB
ϕ on the space of paths in B

In this section, we establish the existence of analogue of Wiener measure mBϕ
on the space of paths in an arbitrary abstract Wiener space B and investigate
the various properties of it.

Let B be an infinite dimensional real separable Banach space and let (B,B(B),
ω) be an abstract Wiener measure space, associated with the measurable norm
‖ · ‖B [7]. For positive real number λ, let ωλ be a Borel measure on B given by

(1) ωλ(B) = ω(λ−1B)



INTEGRATION OVER PATHS IN ABSTRACT WIENER SPACE 133

for Borel subsets B of B. For two Borel measures µ and ν, the convolution
measure µ ∗ ν of µ and ν is given by

(2) µ ∗ ν(B) = µ× ν({(x, y) in B× B |x+ y is in B})

for Borel subsets B of B. Then for two positive real numbers s and t,

(3) ωs ∗ ωt = ω√s2+t2

and µ ∗ δ0 = µ where δ0 is the Dirac measure at the origin in B. Let B∗ be the
dual space of B.

Let a and b be two real numbers with a < b. Let C(B) denote the space
of all B-valued continuous functions on a closed bounded interval [a, b]. Then
C(B) is a real separable Banach space in the norm ||y||C(B) ≡ supa≤t≤b ||y(t)||B.
Let

−→
t = (t0, t1, . . . , tn) be given with a = t0 < t1 < t2 < · · · < tn ≤ b and let

T−→
t

: Bn+1 → Bn+1 be a function given by

(4) T−→
t
(x0, x1, . . . , xn) = (x0, x0 +

√
t1 − t0 x1, . . . , x0 +

n∑

j=1

(
√
tj − tj−1 xj)).

Let ϕ be a non-negative finite measure on (B,B(B)). We define a set function
νϕ−→
t

on B(Bn+1) given by

(5) νϕ−→
t
(B) =

∫

B

[ ∫

Bn
χB ◦ T−→t (x0, x1, . . . , xn) d

( n∏

j=1

ω
)
(x1, . . . , xn)

]
dϕ(x0),

where χB is a characteristic function associated with B. Then νϕ−→
t

is a Borel
measure on (Bn+1,B(Bn+1)). Let J−→

t
: C(B) → Bn+1 be a function with

(6) J−→
t
(y) = (y(t0), y(t1), . . . , y(tn)).

For Borel subsets B0, B1, . . . , Bn in B(B), the subset J−1−→
t

(
∏n
j=0Bj) of C(B)

is called an interval. Let I be the set of all such intervals. Then I is an
semi-algebra. We define a set function Mϕ on I by

(7) Mϕ(J−1−→
t

(
n∏

j=0

Bj)) = νϕ−→
t
(
n∏

j=0

Bj).

Then (x0, x1, . . . , xn) is in T−1−→
t

(
∏n
j=0Bj) if and only if for k = 1, 2, . . . , n, x0

is in B0 and x0 +
∑k
j=1(

√
tj − tj−1 xj) is in Bk, so, we have
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Mϕ(J−1−→
t

(
n∏

j=0

Bj))(8)

=
∫

B

[ ∫

Bn

n∏

j=1

χBj (x0 +
j∑

i=1

(
√
ti − ti−1 xi))d(

n∏

i=1

ω)(x1, . . . , xn)
]

×χB0(x0)dϕ(x0).

Theorem 2.1. Mϕ is well-defined on I.

Proof. There is a minimal representation for an interval I ≡ J−1−→
t

(
∏n
j=0 Bj) as

in (7). Any alternate representation for I must involve additional points. We
will show that, in the case of one additional point, the corresponding formula
for Mϕ(I) agrees with the formula associated with the minimal representation
for Mϕ(I). The case of N additional points can be done by applying the
procedure below N times. Suppose that the interval I ≡ J−1−→

t
(
∏n
j=0Bj) is the

minimal representation and that the extra point, say s, satisfies tk < s < tk+1

for some k = 0, 1, . . . , n − 1. Let I∗ = {y in C(B)| for j = 0, 1, . . . , n, y(tj) is
in Bj and y(s) is in B} and let Xk = x0 +

∑k
i=1(

√
ti − ti−1 xi). Then

∫

B

[ ∫

Bn−k
χB(Xk +

√
s− tk xs)

n−k∏
u=1

χBk+u(Xk +
√
s− tk xs(9)

+
√
tk+1 − s xk+1 +

k+u∑

j=k+2

(
√
tj − tj−1 xj)

d(
n−k∏

j=1

ω)(xk+1, xk+2, . . . , xn)
]
dω(xs)

(i)
=

∫

B

[ ∫

Bn−k
χB(Xk + xs)

n−k∏
u=1

χBk+u(Xk + xs + xk+1 +
k+u∑

j=k+2

xj)

d(ω√tk+1−s ×
n−k−1∏
u=1

ω√tk+u+1−tk+u)(xk+1, (xk+2, . . . , xn))
]
dω√s−tk(xs)

(ii)
=

∫

Bn−k

n−k∏
u=1

χBk+u(Xk + x∗ +
k+u∑

j=k+2

xj)d
(
(ω√s−tk ∗ ω√tk+1−s)

×(
n−k−1∏
u=1

ω√tk+u+1−tk+u)
)
(x∗, (xk+2, . . . , xn))

(iii)
=

∫

Bn−k

n−k−1∏
u=1

χBk+u(Xk + x∗ +
k+u∑

j=k+2

xj)
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d
( n−k∏
u=0

ω√tk+u+1−tk+u
)
(x∗, xk+2, . . . , xn)

(iv)
=

∫

Bn−k

n−k∏
u=1

χBk+u(Xk +
k+u−1∑

j=k

(
√
tj+1 − tj xj+1))d

( n−k∏

j=1

ω
)
(xk+1, . . . , xn).

Step (i) and (iv) follow from the change of variables theorem in [9] and (1).
Step (ii) results from (2). By (3), we obtain Step (iii). Using (8) and (9), we
can easily show that Mϕ(I) = Mϕ(I∗), as desired. ¤

By the essentially same method as in the proofs of Theorem 2.1 and The-
orem 5.1 in [11], B(C(B)), the set of all Borel subsets of C(B), coincides with
smallest σ-algebra generated by I and there exists a unique measure mBϕ on
(C(B),B(C(B))) such that mBϕ(I) = Mϕ(I) for all I in I.

From the change of variables theorem, we have the following theorems which
is one of main theorems.

Theorem 2.2 (The Wiener integration formula). If f : Bn+1 → R is a Borel
measurable function, then following equality holds;

∫

C(B)
f(y(t0), y(t1), . . . , y(tn))dmBϕ(y)(10)

∗=
∫

B

[ ∫

Bn
(f ◦ T−→

t
)(x0, x1, . . . , xn)d(

n∏

j=1

ω)(x1, x2, . . . , xn)
]
dϕ(x0)

where ∗= means that if one side exists, then both sides exist and the two values
are equal.

Remark 2.3. (1) Let ϕ1 and ϕ2 be two finite non-negative Borel measures on
(B,B(B)) and let α and β be two non-negative real numbers. Then, letting
ϕ = αϕ1 + βϕ2, mBϕ = αmBϕ1

+ βmBϕ2
.

(2) For a finite non-negative Borel measure ϕ on (B,B(B)), mBϕ(C(B)) =
ϕ(B), if ϕ is a probability measure on (B,B(B)), then mBϕ is also a probability
measure.

(3) Let M(B) and M(C(B)) be the space of all finite complex-valued count-
ably additive measures on (B,B(B)) and (C(B),B(C(B))), respectively. Then
M(B) and M(C(B)) are two Banach space with respect to its total variation
norm. For ϕ in M(B) with the Jordan decomposition ϕ = ϕ1−ϕ2 + iϕ3− iϕ4,
we let mBϕ = mBϕ1

−mBϕ2
+ imBϕ3

− imBϕ4
. Then mBϕ is well-defined. Further-

more, let a function mB : M(B) →M(C(B)) be given by mB(ϕ) = mBϕ, mB is
a bounded linear operator by bound 4, in the operator norm sense.

Theorem 2.4. For a < s < b and for a non-zero element b∗ of B∗,

mBϕ({y in C(B)|b∗(y(s)) < α})(11)
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=
∫ α

−∞

[ ∫

B

1√
2π(s− a) ‖ b∗ ‖B∗

exp
{
− (v − b∗(x0))2

2(s− a) ‖ b∗ ‖2B∗
}
dϕ(x0)

]
dmL(v)

for any real number α, where mL is the Lebesgue measure on R.

Proof. For a < s < b, for a non-zero b∗ in B∗ and for real number α,

mBϕ({y in C(B)|b∗(y(s)) < α})(12)
(1)
=

∫

C(B)
χb∗−1((−∞,α))(y(s))dm

B
ϕ(y)

(2)
=

∫

B

[ ∫

B
χb∗−1((−∞,α))(x0 +

√
s− ax1)dω(x1)

]
dϕ(x0)

(3)
=

∫

B

[ ∫

B
χ(−∞, 1√

s−a (α−b∗(x0)))b
∗(x1)dω(x1)

]
dϕ(x0)

(4)
=

∫

B

[ ∫ 1√
s−a (α−b∗(x0))

−∞

1√
2π ‖ b∗ ‖B∗

exp
{− u2

2 ‖ b∗ ‖2B∗
}
dmL(u)

]
dϕ(x0)

(5)
=

∫ α

−∞

[ ∫

B

1√
2π(s− a) ‖ b∗ ‖B∗

exp{− (v − b∗(x0))2

2(s− a) ‖ b∗ ‖2B∗
}dϕ(x0)

]
dmL(v).

Step (1) and (3) obtain from the elementary calculus. By the Wiener integra-
tion formula for mBϕ, we have Step (2). Step (4) results from the formula in [7].
By substituting v =

√
s− au + b∗(x0) and the Fubini theorem, we have Step

(5).
Hence, the theorem is proved. ¤

From Theorem 2.4 in the above, we have the following corollaries.

Corollary 2.5. If a < s < b, b∗ is a non-zero element of B∗, ϕ = δ0 and
W (y) = b∗(y(s)), then W has a normal distribution with mean 0 and variation
(s− a) ‖ b∗ ‖2B∗ .
Corollary 2.6. If a < s < b, b∗ is a non-zero element of B∗, ϕ = ω and
b∗(y(s)) = W (y), then W has a normal distribution with mean 0 and variation
(1 + s− a) ‖ b∗ ‖2B∗ .
Proof. For any real number α,

mBω({y in C(B)|W (y) < α})(13)

=
∫ α

−∞

[ ∫

B

1√
2π(s− a) ‖ b∗ ‖B∗

exp{− (v − b∗(x0))2

2(s− a) ‖ b∗ ‖2B∗
}dω(x0)

]
dmL(v)

=
∫ α

−∞

[ ∫ ∞

−∞

1√
2π(s− a) ‖ b∗ ‖B∗

exp{− (v − u)2

2(s− a) ‖ b∗ ‖2B∗
}

× 1√
2π ‖ b∗ ‖B∗

exp{− u2

2 ‖ b∗ ‖2B∗
}dω(u0)

]
dmL(v)
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=
∫ α

−∞

1√
2π(1 + s− a) ‖ b∗ ‖B∗

exp{− v2

2(1 + s− a) ‖ b∗ ‖2B∗
}dmL(v).

Hence, the corollary is proved. ¤
Theorem 2.7. Let Wt(y) = y(t) for a ≤ t ≤ b. Then Wt has stationary
increment.

Proof. Suppose s > 0 and t1, t2, t1 +s and t2 +s are in [a, b] with t1 < t2. Then
for B in B(B),

mBϕ({y in C(B)|Wt2+s(y)−Wt1+s(y) is in B})(14)

=
∫

B

[ ∫

B
χB(

√
t2 − t1x2)dω(x2)

]
dϕ(x0)

= mBϕ({y in C(B)|y(t2)− y(t1) is in B}).
Hence, the theorem is proved. ¤
Theorem 2.8. If a ≤ t1 < t2 < t3 ≤ b and B1 and B2 are both in B(B), then

ϕ(B)mBϕ({y in C(B)|y(t2)− y(t1) is in B1 and y(t3)− y(t2) is in B2})(15)

= mBϕ({y in C(B)|y(t2)− y(t1) is in B1})
×mBϕ({y in C(B)|y(t3)− y(t2) is in B2}).

Proof. For a ≤ t1 < t2 < t3 ≤ b and B1 and B2 in B(B)

mBϕ({y in C(B)|y(t2)− y(t1) is in B1 and y(t3)− y(t2) is in B2})(16)

=
∫

C(B)
χB1(y(t2)− y(t1))χB2(y(t3)− y(t2))dmBϕ(y)

=
∫

B

[ ∫

B×B×B
χB1(

√
t2 − t1x2)χB2(

√
t3 − t2x3)

dω × ω × ω(x1, x2, x3)
]
dϕ(x0)

= ϕ(B)ω√t2−t1(B1)ω√t3−t2(B2)

and

mBϕ({y in C(B)|y(t2)− y(t1) is in B1})
×mBϕ({y in C(B)|y(t3)− y(t2) is in B2})

=
∫

C(B)
χB1(y(t2)− y(t1))dmBϕ(y)

∫

C(B)
χB2(y(t3)− y(t2))dmBϕ(y)

=
∫

B

[ ∫

B
χB1(

√
t2 − t1x2)dω(x2)

]
dϕ(x0)

∫

B

[ ∫

B
χB2(

√
t3 − t2x3)dω(x3)

]
dϕ(x0)

= ϕ(B)2ω√t2−t1(B1)ω√t3−t2(B2).

Hence, the theorem is proved. ¤
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By the essentially similar method as in the above, we can prove the following
theorem.

Theorem 2.9. If a ≤ t1 < t2 < t3 < t4 ≤ b and B1 and B2 are both in B(B),

ϕ(B)mBϕ({y in C(B)|y(t2)− y(t1) is in B1 and y(t4)− y(t3) is in B2})(17)

= mBϕ({y in C(B)|y(t2)− y(t1) is in B1})
mBϕ({y in C(B)|y(t4)− y(t3) is in B2}).

Remark 2.10. If ϕ is a probability measure on (B,B(B)) and a ≤ t1 < t2 ≤
t3 < t4 ≤ b, y(t2)− y(t1) and y(t4)− y(t3) are stochastically independent.

Theorem 2.11. If
∫
B ‖ x ‖ dϕ(x) is finite, then F (y) = y is Bochner integrable

on C(B) and

(18) (B0)−
∫

C(B)
ydmBϕ(y) = (B0)−

∫

B
xdϕ(x).

Proof. Let D be the set of all rational numbers in [a, b]. Then we can write
D = {un | n is a natural numbers}. For a natural number m, let Dm =
{u1, u2, . . . , um}. Then by the monotone convergence theorem,∫

C(B)
‖ y ‖C(B) dm

B
ϕ(y)(19)

=
∫

C(B)
sup
u∈D

‖ y(u) ‖B dmBϕ(y)

=
∫

C(B)
lim
m→∞

sup
u∈Dm

‖ y(u) ‖B dmBϕ(y)

= lim
m→∞

∫

C(B)
sup
u∈Dm

‖ y(u) ‖B dmBϕ(y)

= lim
m→∞

∫

B

[ ∫

B
sup
u∈Dm

‖ √u− ax1 + x0 ‖ dω(x1)
]
dϕ(x0)

≤
√
b− aϕ(B)

∫

B
‖ x1 ‖ dω(x1) +

∫

B
‖ x0 ‖ dϕ(x0).

Since
∫
B ‖ x1 ‖ dω(x1) is finite by Fernique’s theorem [3], the right side of (19)

is finite, so
∫
C(B) ‖ y ‖C(B) dm

B
ϕ(y) is finite. Since F is weakly measurable

and C(B) is separable, by Pettis measurability theorem in [2], F is strongly
measurable. Hence, from Theorem 2 in [2], F is Bochner integrable.

Now, if b∗ is a non-zero element of B∗ and a ≤ s ≤ b then putting T (y) =
b∗(y(s)), T is a bounded linear functional, so

T
(
(B0)−

∫

C(B)
ydmBϕ(y)

)
(20)

(1)
=

∫

C(B)
T (y)dmBϕ(y)
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(2)
=

∫

C(B)
b∗(y(s))dmBϕ(y)

(3)
=

∫

B

[ ∫ ∞

−∞

u√
2π(s− a) ‖ b∗ ‖B∗

exp{− (u− b∗(x0))2

2(s− a) ‖ b∗ ‖2B∗
}dmL(u)

]
dϕ(x0)

(4)
=

∫

B
b∗(x0)dϕ(x0)

(5)
= b∗

(
(Bo)−

∫

B
x0dϕ(x0)

)
.

Step(1) follows from Theorem 6 in [2]. From the definition of T , we have
Step(2). By Theorem 2.4, we obtain Step(3). Using the elementary calculus,
we have Step(4). Step(5) results from the assumption and Theorem 2 in [2].
Hence (B0)−

∫
C(B) ydm

B
ϕ(y) = (B0)−

∫
B xdϕ(x). ¤

Notation 2.12. For y in C(B), let

(21) [y](s) =
n∑

j=1

χ[tj−1,tj)(s)
[
y(tj−1)+

s− tj−1

tj − tj−1
(y(tj)−y(tj−1))

]
+y(b)χ{b}(s)

for s in [a, b].
For (u0, u1, . . . , un) ∈ Bn+1, let

(22) [u](s) =
n∑

j=1

χ[tj−1,tj)(s)
[
uj−1 +

s− tj−1

tj − tj−1
(uj − uj−1)

]
+ unχ{b}(s)

for s in [a, b].

Theorem 2.13. Let ϕ be a probability measure on (B,B(B)). Let a = t0 <
t1 < · · · < s1 < tj−1 < s < tj < s2 < · · · < tn = b and let b∗ be a non-zero
element of B∗. Let X, Y and Z be three functions from C(B) into R with
X(y) = b∗(y(s)− [y](s)), Y (y) = b∗(y(s1)) and Z(y) = b∗(y(s2)). Then X and
Y are stochastically independent and X and Z are stochastically independent.

Proof. By Theorem 2.4, letting A =
√

(tj−s)(s−tj−1)
tj−tj−1

,

E(exp{iλX})(23)

=
∫

C(B)
exp{iλb∗(y(s)− [y](s))}dmBϕ(y)

=
∫

B

( ∫

B

∫

B

∫

B
exp{iλ(

√
s− tj−1

tj − s

tj − tj−1
b∗(v2)

−√
tj − s

s− tj−1

tj − tj−1
b∗(v3))}dω(v3)dω(v2)dω(v1)

)
dϕ(v0)

=
∫

B
exp{iλb∗(Av)}dω(v)
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=
∫

R
exp{iλx} 1√

2πA ‖ b∗ ‖2B∗
exp{− x

2A2 ‖ b∗ ‖2B∗
}dmL(x)

= exp{−1
2
A2 ‖ b∗ ‖2B∗ λ2}.

Hence X is normal distributed with mean 0 and variance (tj−s)(s−tj−1)
tj−tj−1

‖ b∗ ‖2B∗ .
And

E(exp{iλY })(24)

=
∫

C(B)
exp{iλb∗(y(s1))}dmBϕ(y)

=
∫

B

( ∫

B
exp{iλb∗(v0) + iλb∗(

√
s1 − av1)}dω(v1)

)
dϕ(v0)

= exp{−1
2
(s1 − a) ‖ b∗ ‖2B∗ λ2}

∫

B
exp{iλb∗(v0)}dϕ(v0)

and

E(exp{iλZ})(25)

=
∫

C(B)
exp{iλb∗(y(s2))}dmBϕ(y)

=
∫

B

( ∫

B
exp{iλb∗(v0) + b∗(

√
s2 − av1)}dω(v1)

)
dϕ(v0)

= exp{−1
2
(s2 − a) ‖ b∗ ‖2B∗ λ2}

∫

B
exp{iλb∗(v0)}dϕ(v0).

By the basic calculation,

E(exp{iλ1X + iλ2Y })(26)

=
∫

C(B)
exp{iλ1(b∗(y(s))− b∗([y](s))) + iλ2b

∗(y(s1))}dmBϕ(y)

=
∫

B

∫

B

∫

B

∫

B

∫

B
exp{iλ1(b∗(

√
s− tj−1(tj − s)
tj − tj−1

v3)

−b∗(
√
tj − s(s− tj−1)
tj − tj−1

v4)) + iλ2b
∗(v0 +

√
s1 − av1)}

dω(v4)dω(v3)dω(v2)dω(v1)dϕ(v0)

=
∫

B
exp{iλ1b

∗(Av)}dω(v)
∫

B
exp{iλ2b

∗(
√

(s1 − a)v1)}dω(v1)

×
∫

B
exp{iλ2b

∗(v0)}dϕ(v0)

= exp{−1
2
A2 ‖ b∗ ‖2B∗ λ2

1} exp{−1
2
(s1 − a) ‖ b∗ ‖2B∗ λ2

2}

×
∫

B
exp{iλ2b

∗(v0)}dϕ(v0)
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and

E(exp{iλ1X + iλ2Z})(27)

=
∫

C(B)
exp{iλ1(b∗(y(s))− b∗([y](s))) + iλ2b

∗(y(s2))}dmBϕ(y)

=
∫

B

∫

B

∫

B

∫

B

∫

B
exp{iλ1(b∗(

√
s− tj−1(tj − s)
tj − tj−1

v2)

−b∗(
√
tj − s(s− tj−1)
tj − tj−1

v3)) + iλ2b
∗(v0 +

√
tj−1 − av1

+
√
s− tj−1v2 +

√
tj − sv3 +

√
s− tjv4)}

dω(v4)dω(v3)dω(v2)dω(v1)dϕ(v0)

= exp{−1
2
A2 ‖ b∗ ‖2B∗ λ2

1} exp{−1
2
(s2 − a) ‖ b∗ ‖2B∗ λ2

2}

×
∫

B
exp{iλ2b

∗(v0)}dϕ(v0).

Hence,

E(exp{iλ1X + iλ2Y }) = E(exp{iλ1X})E(exp{iλ2Y })
and

E(exp{iλ1X + iλ2Z}) = E(exp{iλ1X})E(exp{iλ2Z}).
From [8], X and Y are stochastically independent and X and Z are stochasti-
cally independent. ¤

3. The measure-valued measure V X
ϕ on (C(B), B(C(B)))

Using the concept of conditional expectation in [15], Ryu and Im derived a
measure-valued measure V Xϕ and they found the integration formula for V Xϕ
on the analogue of Wiener measure space (C[a, b], ωϕ). In this section, we
define a measure-valued measure V Xϕ on (C(B),B(C(B))), associated with the
measurable function X and find two integration formulae with respect to V Xϕ .

Let X : C(B) → Bn+1 be a Borel measurable function. For B in B(C(B))
and for E in B(Bn+1), we let

(28) [V Xϕ (B)](E) = mBϕ(B ∩X−1(E)).

Then for B in B(C(B)), V Xϕ (B) is a measure on (Bn+1,B(Bn+1)) and V Xϕ :
B(C(B)) →M(Bn+1), where M(Bn+1) is the space of Borel measures on Bn+1,
is a measure-valued measure in the total variation norm sense, clearly.
Define a measure PX on (Bn+1,B(Bn+1)) determined by X as follows;

(29) PX(E) = mBϕ(X−1(E))
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for E in B(Bn+1).
Let F : C(B) → R be a mBϕ-integrable function. For E in B(Bn+1), we let

(30) µ(E) =
∫

X−1(E)

F (y)dmBϕ(y).

Then µ is a Borel measure on Bn+1 and µ is absolutely continuous with respect
to PX . So, by the Radon-Nikodym theorem, there is a B(Bn+1)-measurable
and PX -integrable function f on Bn+1 such that

∫

X−1(E)

F (y)dmBϕ(y) = µ(E)(31)

=
∫

E

f(x0, x1, . . . , xn)dPX(x0, x1, . . . , xn)

for E in B(Bn+1).
When ϕ is a probability Borel measure on B(B), f is called the conditional

expectation of F given X and is denoted by Eϕ(F |X) in [15].

Theorem 3.1. For all E in B(Bn+1) and for mBϕ-integrable function F , the
following equality holds

(32)
[
(Ba)−

∫

C(B)
F (y)dV Xϕ (y)

]
(E) =

∫

X−1(E)

F (y)dmBϕ(y),

where (Ba)− ∫
C(B) F (y)dV Xϕ (y) is the Bartle integral.

Proof. Let F = χB where B is in B(C(B)). Then for E in B(Bn+1),
∫

X−1(E)

F (y)dmBϕ(y) = mBϕ(B ∩X−1(E))(33)

= [V Xϕ (B)](E).

If F is a simple function, then by the basic properties of the Lebesgue integral
and the Bartle integral, the equality (32) holds. Suppose F is mBϕ-integrable.
Then there is an increasing sequence 〈Fn〉 of simple functions such that 〈Fn〉
converges to F mBϕ-a.e., and limn→∞

∫
C(B) Fn(y)dm

B
ϕ(y) =

∫
C(B) F (y)dmBϕ(y).

Then for n ≥ m,

‖ (Ba)−
∫

C(B)
Fn(y)dV Xϕ (y)− (Ba)−

∫

C(B)
Fm(y)dV Xϕ (y) ‖(34)

= ‖ (Ba)−
∫

C(B)
(Fn(y)− Fm(y))dV Xϕ (y) ‖

=
∫

C(B)
(Fn(y)− Fm(y))dmBϕ(y)
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so, 〈(Ba) − ∫
C(B) Fn(y)dV

X
ϕ (y)〉 is Cauchy in the total variation norm sense.

By the definition of Bartle integral,

(Ba)−
∫

C(B)
F (y)dV Xϕ (y) = lim

n→∞
(Ba)−

∫

C(B)
Fn(y)dV Xϕ (y)

where the convergence means the convergence in the total variation norm sense.
Hence, for E in B(Bn+1),

[
(Ba)−

∫

C(B)
F (y)dV Xϕ (y)

]
(E)(35)

=
[

lim
n→∞

(Ba)−
∫

C(B)
Fn(y)dV Xϕ (y)

]
(E)

= lim
n→∞

[
(Ba)−

∫

C(B)
Fn(y)dV Xϕ (y)

]
(E)

= lim
n→∞

∫

X−1(E)

Fn(y)dmBϕ(y)

=
∫

X−1(E)

F (y)dmBϕ(y)

as desired. ¤

From Theorem 2.2 and Theorem 3.1, we have directly the following theorem.

Theorem 3.2 (The Wiener integration formula). Suppose for k = 1, 2, . . . , n,
ik is a nonnegative integer such that m = n +

∑n
j=1 ij + 1 and a ≡ t0 ≡

t0,0 < t0,1 < t0,2 < · · · < t0,i1 < t1 ≡ t0,i1+1 ≡ t1,0 < t1,1 < t1,2 < · · · <
tn−1,in < tn ≡ tn−1,in+1 ≡ b and for j = 1, 2, . . . , n, ū0,0 = u0,0 and ūj−1,v =
u0,0 +

∑j−2
e=0

∑ie+1+1
f=1

√
te,f − te,f−1ue,f +

∑v
f=0

√
tj−1,f − tj−1,f−1uj−1,f . If

f : Bm → R is a Borel measurable function then the following equality holds;
[
(Ba)−

∫

C(B)
f(y(t0,0), y(t0,1), . . . , y(tn−1,in+1))dV

J~t
ϕ (y)

]
(E)(36)

∗=
∫

B

[ ∫

Bm−1
f(ū0,0, ū0,1, . . . , ūn−1,in+1)

n∏
g=0

χE[g](ūg,0)

d(
m−1∏

i=1

ω)(u0,0, u0,1, . . . , un−1,in+1)
]
dϕ(u0,0),

where E[g] is the gth-section of E.

When using (36) in the above, we calculate an integral of various functions,
with respect to V J~tϕ , we meet too the difficult problems frequently, so we can
need more a simple formula for integral with respect to V

J~t
ϕ which is one of

main theorems. Indeed, at 1988, Park and Skoug proved the simple formula for
conditional expectation in the concrete Wiener case in [10] and at 2008, D. H.
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Cho established the simple formula for conditional expectation in C0(B) case
[1]. Our result is very similar to previous results but the process of its proof is
not quite same.

Theorem 3.3 (The simple formula for conditional expectation). Let ϕ be a
Borel probability measure on B and let F be mBϕ-integrable on C(B). Then for
E in B(Bn+1),

[
(Ba)−

∫

C(B)
F (y)dV J~tϕ (y)

]
(E)(37)

=
∫

J−1
~t

(E)

F (y)dmBϕ(y)

=
∫

E

( ∫

C(B)
F (y − [y] + [~u])dmBϕ(y)

)
dPJ~t(~u)

Proof. Let A be in B(C(Bn)) and let F = χA. Then for E in B(Bn+1),∫

J−1
~t

(E)

F (y)dmBϕ(y) = mBϕ(A ∩ J−1
~t

(E))(38)

=
∫

E

E(F |J~t)(~u)dPJ~t(~u)

=
∫

E

E(F (y − [y] + [~u])|J~t)(~u)dPJ~t(~u).

From Theorem 2.13, y − [y] and J~t(y) are weakly stochastically independent.
Since B is separable, by [12], y − [y] and J~t(y) are stochastically independent.
Hence

(39)
∫

J−1
~t

(E)

F (y)dmBϕ(y) =
∫

E

E(F (y − [y] + [~u]))dPJ~t(~u).

Thus, the result holds for the characteristic function of E in B(C(B)). The
general case follows by the usual arguments in Bartle integration theory. ¤

4. Examples and applications

In this section, we give the various examples for our theorems.

Example 4.1 (The absolutely continuity). Let ϕ and ψ be two finite positive
Borel measures on B. Then ϕ is absolutely continuous with respect to ψ if and

only if mBϕ is absolutely continuous with respect to mBψ and dmBϕ
dmBψ

= dϕ
dψ (y(0)).

Suppose that ϕ is absolutely continuous with respect to ψ. Then there is a
measurable function g : B→ R such that for E in B(B), ϕ(E) =

∫
E
g(x)dψ(x).

Let µψ : B(C(B)) → R be a function with µψ(B) =
∫
B
g(y(0))dmBψ(y) for

B in B(C(B)). Then
∫
C(B) |g(y(0))|dmBψ(y) =

∫
B |g(x)|dψ(x), so g is mBψ-

integrable. Hence µψ is a Borel measure on C(B). Consider a set J = {B
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in B(C(B))|mBϕ(B) = µψ(B)}. Then by the Radon-Nykodym theorem, I ⊂
J . By the routine method as in the measure theory, J is a σ-algebra, so
B(C(B)) = J . Thus, we have mBϕ(B) =

∫
C(B) g(y(0))dmBψ(y).

Now, we assume that mBϕ is absolutely continuous with respect to mBψ and N is
a Borel subset with ψ(N) = 0. Let J0 : C(B) → B be a function with J0(y) =
y(0). Then mBψ(J−1

0 (N)) =
∫
B χN (x)dψ(x) = 0, so mBϕ(J−1

0 (N)) = ϕ(N) = 0,
that is, ϕ is absolutely continuous with respect to ψ.

Example 4.2 (The scale-invariant measurability). We can establish the exis-
tence of scale-invariant measurable subsets in C(B).

Given partition
∏
n of [a, b]; a = tn0 < tn1 < · · · < tnk(n) = b with µ(

∏
n) =

max1≤p≤k(n) |tnp − tnp−1| → 0 as n→ +∞ and y in C(B), let SQ
n
(y) =

∑k(n)
j=1 ‖

y(tnj )− y(tnj−1) ‖2B. By [11],
∫
B ‖ x ‖2B dω(x) and

∫
B ‖ x ‖4B dω(x) are finite. Let

α = (b − a)
∫
B ‖ x ‖2B dω(x) and β =

∫
B ‖ x ‖4B dω(x) −( ∫

B ‖ x ‖2B dω(x)
)2.

Then Theorem 2.2,
∫

C(B)
SQ

n
(y)dmBϕ(y)

=
∫

B

[ ∫

Bk(n)

k(n)∑

j=1

‖ (x0 +
j∑

i=1

√
tni − tni−1xi)− (x0

+
j−1∑

i=1

√
tni − tni−1xi) ‖2B d

( k(n)∏

j=1

ω
)
(x1, x2, . . . , xk(n))

]
dϕ(x0)

= ϕ(B)
k(n)∑

j=1

(tnj − tnj−1)
∫

Bk(n)
‖ xj ‖2B d

( k(n)∏

j=1

ω
)
(x1, x2, . . . , xk(n))

= αϕ(B)

and ∫

C(B)
(SQ

n
(y)− α)2dmBϕ(y)

=
∫

B

[ ∫

Bk(n)
(
k(n)∑

j=1

(tnj − tnj−1) ‖ xj ‖2B)2d
( k(n)∏

j=1

ω
)
(x1, x2, . . . , xk(n))

]

dϕ(x0)− α2ϕ(B)

= ϕ(B)(
k(n)∑
p=1

k(n)∑
q=1

(tnp − tnp−1)(t
n
q − tnq−1))

( ∫

B
‖ x ‖2B dω(x)

)2

+ϕ(B)β
k(n)∑
p=1

(tnp − tnp−1)
2 − α2ϕ(B)
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= ϕ(B)β
k(n)∑
p=1

(tnp − tnp−1)
2.

By the definition of Riemann integral
∫ b
a
xdx, we have limn→∞,µ(

Q
n)→0

∑k(n)
p=1

(tnp − tnp−1)
2 = 0, so we can choose a subsequence 〈∏σ(n)〉 of 〈∏n〉 such that

∑∞
n=1

∑k(n)
p=1 (tσ(n)

p −tσ(n)
p−1 )2 is finite, that is,

∑∞
n=1

∫
C(B)(S

Q
σ(n)

(y)−α)2 dmBϕ(y)

= ϕ(B)β
∑∞
n=1

∑k(σ(n))
p=1 (tσ(n)

p −tσ(n)
p−1 )2 is finite. From [9], there is a subsequence

〈σ∗(n)〉 of 〈σ(n)〉 such that limn→∞ SQ
σ∗(n)

(y) = α for mBϕ-a.e. y.
For λ ≥ 0, let

Ωλ = {y in C(B)| lim
n→∞

SQ
σ∗(n)

(y) = λ2α}
and let

D∗ = {y in C(B)| the limit lim
n→∞

SQ
σ∗(n)

(y) doesn′t exist}.
Then for two positive real numbers λ1 and λ2, λ1Ωλ2 = Ωλ1λ2 , Ωλ (λ ≥ 0)
and D∗ are Borel subsets, C(B) is the disjoint union of the sets Ωλ (λ ≥ 0)
and D∗ and mBϕ(Ωλ) = 0 if and only if λ 6= 1.

For λ > 0, we define a Borel measure mBϕ,λ on B(C(B)) by mBϕ,λ(B) =
mBϕ(λ−1B).

For λ > 0, let (B, ¯B(C(B))λ, m̄Bϕ,λ) be the completion of (B,B(C(B)),mBϕ,λ).
Let S = ∩λ>0

¯B(C(B))λ. The element of S is called the scale-invariant measur-
able subset of C(B). Then for λ > 0, B(C(B)) ⊂

6=
S ⊂
6=

¯B(C(B))λ.

By the elementary calculus and Theorem 2.4, directly we have the following
example for the convolution.

Example 4.3 (The convolution). Let ϕ and ψ be two positive finite Borel
measures on (B,B(B)). Let p and q be two positive real numbers. Then mBϕ,p ∗
mBψ,q = mB

ϕ∗ψ,
√
p2+q2

on B(C(B)).

Let B0, B1, . . . , Bn be in B(B). Then

mBϕ,p ∗mBψ,q(J−1
~t

(
n∏

j=0

Bj))

= mBϕ,p ×mBψ,q({(x, y) in C(B)× C(B)|x+ y is in J−1
~t

(
n∏

j=0

Bj) })

=
∫

C(B)×C(B)
χQn

j=0 Bj
(J~t(x+ y))dmBϕ,p ×mBψ,q(x, y)

=
∫

C(B)×C(B)
χQn

j=0 Bj
(x(t0) + y(t0), x(t1) + y(t1), . . . , x(tn) + y(tn))

dmBϕ,p ×mBψ,q(x, y)
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=
∫

B

∫

B

[ ∫

Bn

∫

Bn
χQn

j=0 Bj
(x0 + y0, x0 + y0 +

√
t1 − t0(x1 + y1), . . . ,

x0 + y0 +
n∑

j=1

√
tj − tj−1(xj + yj))d(

n∏

j=1

ωp)(x1, x2, . . . , xn)

d(
n∏

j=1

ωq)(y1, y2, . . . , yn)
]
dϕ(x0)dψ(y0)

=
∫

B

[ ∫

Bn
χQn

j=0 Bj
(z0, z0 +

√
t1 − t0z1, . . . , z0 +

n∑

j=1

√
tj − tj−1zj)

d(
n∏

j=1

ω√
p2+q2

)(z1, z2, . . . , zn)
]
d(ϕ ∗ ψ)(z0)

= mB
ϕ∗ψ,

√
p2+q2

(J−1
~t

(
n∏

j=0

Bj)).

Consider a set K = {E in B(C(B))|mBϕ,p ∗mBψ,q(E) = mB
ϕ∗ψ,

√
p2+q2

(E)}. Then

K is a monotone class containing all intervals in C(B), so, K = B(C(B)).

Example 4.4. Let ϕ be a probability measure on (B,B(B)) and let b∗ be a
non-zero element of B∗. Let tj−1 ≤ s ≤ tj . Then b∗(y(s)) is V J~tϕ -integrable and

Eϕ(b∗(y(s))|J~t)(u0, u1, . . . , un)(40)

=
[
(Ba)−

∫

C(B)
b∗(y(s))dV J~tϕ (y)

]
(u0, u1, . . . , un)

=
s− tj−1

tj − tj−1
b∗(uj) +

tj − s

tj − tj−1
b∗(uj−1).

For E in B(Bn+1),
[
(Ba)−

∫

C(B)
b∗(y(s))dV J~tϕ (y)

]
(E)

=
∫

E

∫

C(B)
b∗(y(s)− [y](s) + [~u](s))dmBϕ(y)dPJ~t(~u)

=
∫

E

∫

Bj+1
b∗

[
(x0 +

√
t1 − t0x1 + · · ·+ √

s− tj−1xs)

− s− tj−1

tj − tj−1
(x0 +

√
t1 − t0x1 + · · ·+ √

s− tj−1xs +
√
tj − sxj)

− tj − s

tj − tj−1
(x0 +

√
t1 − t0x1 + · · ·+ √

tj−1 − tj−2xj−1)

+
s− tj−1

tj − tj−1
uj +

tj − s

tj − tj−1
uj−1

]
dϕ(x0)
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d(
j+1∏

i=1

ω)(x1, x2, . . . , xj−1, xs, xj)dPJ~t(~u)

=
∫

E

∫

B

∫

B

∫

B

[ (tj − s)(s− tj−1)
1
2

tj − tj−1
b∗(xs) +

(s− tj−1)(tj − s)
1
2

tj − tj−1
b∗(xj)

+
s− tj−1

tj − tj−1
b∗(uj) +

tj − s

tj − tj−1
b∗(uj−1)

]
dϕ(x0)

d(
2∏

j=1

ω)(xs, xj)dPJ~t(~u)

=
∫

E

( s− tj−1

tj − tj−1
b∗(uj) +

tj − s

tj − tj−1
b∗(uj−1)

)
dPJ~t(~u),

so the example is proved.
Using Example 4.4 in above, we have the following theorem.

Example 4.5. Under the hypothesis in Example 4.4, if

F (y) =
∫

[a,b]

b∗(y(s))dmL(s),

then F is V J~tϕ -integrable and from (40),
[
(Ba)−

∫

C(B)
F (y)dV J~tϕ (y)

]
(E)(41)

=
∫

E

n∑

k=1

[
1
2
(tk − tk−1)b∗(uk) +

1
2
(tk − tk−1)b∗(uk−1)]dPJ~t(~u)

for E in B(Bn+1), so

Eϕ(
∫ b

a

b∗(y(s))dmL(s)|J~t)(u0, u1, . . . , un)

=
n∑

k=1

[
1
2
(tk − tk−1)b∗(uk) +

1
2
(tk − tk−1)b∗(uk−1)].
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