References
- R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under translations, Ann. Math. 45 (1944), 386-396. https://doi.org/10.2307/1969276
- S. J. Chang and D. M. Chung, Conditional function space integrals with applications, Rocky Mountain J. Math. 26 (1996), 37-62. https://doi.org/10.1216/rmjm/1181072102
- M. K. Im and K. S. Ryu, An analogue of Wiener measure and its applications, J. Korean Math. Soc. 39 (2002), 801-819. https://doi.org/10.4134/JKMS.2002.39.5.801
- G. W. Johnson and M. L. Lapidus, The Feynman integral and Feynman's operational calculus, Oxford Mathematical Monographs, Oxford Univ. Press, 2000.
- I. Pierce and D. L. Skoug, Reflection principles for general Wiener function space, J. Korean Math. Soc. 50 (2013), 607-625. https://doi.org/10.4134/JKMS.2013.50.3.607
- K. S. Ryu and M. K. Im, A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc. 354 (2002), 4921-4951. https://doi.org/10.1090/S0002-9947-02-03077-5
- K. S. Ryu, The generalized analogue of Wiener space and its properties, Honam Math. J. 32 (2010), 633-642. https://doi.org/10.5831/HMJ.2010.32.4.633
- N. Wiener, Differential space, J. Math. Phys. 2 (1923), 131-174. https://doi.org/10.1002/sapm192321131
- Y. Yamasaki, Measures on infinite dimensional space, World Scientific in Pure Math. 15 (1985).
- J. Yeh, Stochastic processes and the Wiener integral, Marcel Deckker, New York, 1973.
Cited by
- A Banach Algebra Similar to Cameron-Storvick’s One with Its Equivalent Spaces vol.2018, pp.2314-8888, 2018, https://doi.org/10.1155/2018/9345126
- AN EVALUATION FORMULA FOR A GENERALIZED CONDITIONAL EXPECTATION WITH TRANSLATION THEOREMS OVER PATHS vol.57, pp.2, 2020, https://doi.org/10.4134/jkms.j190133
- A BANACH ALGEBRA AND ITS EQUIVALENT SPACES OVER PATHS WITH A POSITIVE MEASURE vol.35, pp.3, 2020, https://doi.org/10.4134/ckms.c190314