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THE DOBRAKOV INTEGRAL OVER PATHS

Kun Sik Ryu*

Abstract. In 2002, the author introduced the definition and its
properties of an analogue of Wiener measure over paths. In this ar-
ticle, using these concepts, we will derive an operator-valued mea-
sure over paths and will investigate the properties for integral with
respect to the measure. Specially, we will prove the Wiener integral
formula for our integral and give some example of it.

1. Introduction

The Brownian motion was found by the British botanist Robert
Brown in 1827. The theory for this motion was developed extensively
and deeply by many scientists including Cantoni, Oehl, Delsaux, Guoy
and Einstein. In 1923, for the probabilitic approach of Brownian mo-
tion, Wiener suggested a new measure, the so called Wiener measure
[6]. But, through the Wiener measure theory, we can treat theories for
one small particle, merely.

Recently, the author and Im [6] introduced a new definition of an ana-
logue of Wiener measure space and investigate some theories on many
small particles moving along the law of diffusion. Since then, they pre-
sented some paper related to it [4, 5]. From this concept, we can derived
an operator-valued measure V on C[0, t] which is the space of all con-
tinuous functions on a closed interval [0, t].

Since 1970, Dobrakov presented several papers associated with the
theories of integral of vector-valued function with respect to the operator-
valued measures. the so-called Dobrakov’s integral [3].

In this paper, we will treat the Dobrakov integral with respect to an
operator-valued measure on C[0, t].

Received January 19, 2006.
2000 Mathematics Subject Classification: Primary 28C35, 28C20.
Key words and phrases: Analogue of Wiener measure, Dobrakov integral,

measure-valued measure.
This work was supported by the Research Fund in Han Nam University in 2005.



62 K.S. Ryu

2. Preliminaries: Definitions and notations

In this section, we introduce some notations, definitions and facts
which are needed to understand the subsequent sections.

Let t be a positive real number and n be a non-negative integer. For
~t = (t0, t1, · · · , tn) with 0 = t0 < t1 < · · · < tn ≤ t, let J~t : C[0, t] →
Rn+1 be a function with

J~t(x) = (x(t0), x(t1), · · · , x(tn)) . (2.1)

For Bj (j = 0, 1, 2, · · · , n) in B(R), the subset J−1
~t

(
∏n

j=0 Bj) of C[0, t] is
called an interval and let I be the set of all intervals. For a non-negative
finite Borel measure ϕ on (R,B(R)), we let

mϕ(J−1
~t

(
n∏

j=0

Bj)) (2.2)

=
∫

B0

[
∫

∏n
j=1 Bj

W (n + 1;~t; u0, u1, · · · , un) d

n∏

j=1

mL(u1, · · · , un)] dϕ(u0)

where

W (n + 1;~t; u0, u1, · · · , un)

= (
n∏

j=1

1√
2π(tj − tj−1)

)exp{−1
2

n∑

j=1

(uj − uj−1)2

tj − tj−1
} .

Then B(C[0, t]), the set of all Borel subsets in C[0, t], coincides with
the smallest σ-algebra generated by I and there exists a unique positive
measure ωϕ on (C[0, t],B(C[0, t])) such that ωϕ(I) = mϕ(I) for all I in
I.

For ϕ in M(R) with the Jordan decomposition ϕ =
∑4

j=1 αjϕj , let
ωϕ =

∑4
j=1 αjωϕj . We say that ωϕ is the complex-valued analogue of

Wiener measure on (C[0, t],B(C[0, t])), associated with ϕ. If ϕ is a Dirac
measure δ0 at the origin in R then ωϕ is the classical Wiener measure.

By the change of variables formula, we can easily prove the following
theorem.
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Theorem 2.1. (The Wiener integration formula) If f : Rn+1 → C is
a Borel measurable function then the following equality holds.∫

C[0,t]
f(x(t0), x(t1), · · · , x(tn)) dωϕ(x) (2.3)

∗=
∫

Rn+1

f(u0, u1, · · · , un)W (n + 1;~t; u0, u1, · · · , un)

d(
n∏

j=1

mL × ϕ)((u1, u2, · · · , un), u0)

where ∗= means that if one side exists then both sides exist and the two
values are equal.

Theorem 2.2. |ωϕ| = ω|ϕ| on (C[0, t],B(C[0, t])).

Let X : C[0, t] → R be a function with X(x) = x(t)
For B in B(C[0, t]), we let

(2.4) [Vϕ(B)](E) = ωϕ(B ∩X−1(E))

for E in B(R).

From [3, Theorem 4.2, p4933], we obtain theorems as follows.

Theorem 2.3. For ϕ in M(R), Vϕ is a measure-valued measure on
(C[0, t], B(C[0, t])) in the total variation norm sense.

Theorem 2.4. Let ϕ be in M(R) and let B be in B(C[0, t]) with
|ωϕ|(B) = 0. Then Vϕ(B) is a zero measure on (R,B(R)).

Theorem 2.5. Let ϕ be in M(R) and let ~t = (t0, t1, · · · , tn) be a
vector in Rn+1 with 0 = t0 < · · · < tn = t. Let f : Rn+1 → C be a Borel
measurable function such that f(u0, u1, · · · , un)W (n + 1;~t; u0, · · · , un)
is |ϕ| × ∏n

j=1 mL- integrable. Let F : C[0, t] → C be a function with
F (x) = (f ◦ J~t)(x) = f(x(t0), x(t1), · · · , x(tn)). Then F is Vϕ-Bartle
integrable on C[0, t] and for E in B(R),

[(Ba)−
∫

C[0,t]
F (x) dVϕ(x)](E) (2.7)

=
∫

E
{
∫

Rn−1

(
∫

R
f(u0, u1, · · · , un)W (n + 1;~t; u0, · · · , un)
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dϕ(u0)) d(
n−1∏

j=1

mL)(u1, · · · , un−1)} dmL(un)

Letting V (B) : M(R) →M(R) with [V (B)](ϕ) = Vϕ(B), V (B) is a
bounded linear operator on M(R).

3. The Dobrakov integral

This section is the main section in this note. Here, we will treat the
theory of Dobrakov integral over C[0, t].

First of all, we introduce the definition of Dobrakov integral [1].

Definition 3.1. Let X,Y be two Banach spaces and let L(X,Y) be
the space of bounded linear operators from X in Y. Let m be a L(X,Y)-
valued measure countably additive in the strong operator topology. For
a mesurable set E, we define a non-negative set function m̂, which will
be called the semi-variation of m, by

m̂(E) = sup{|
n∑

i=1

m(Ei)Xi|}

where E1, E2, · · · , En are dissection of E and ||Xi|| ≤ 1 for i = 1, 2, · · · , n.
We say that a measurable set E is an integrable set if m̂(E) is finite. A
strongly measurable function f : C[0, t] → X is called integrable if there
exists a sequence of simple integrable functions {fn}∞n=1 converging al-
most everywhere m to f for which the integrals

∫
fndm, n = 1, 2, · · · are

uniformly countably additive. In that case the integral of the function
f on a set E is defined by the equality

∫
E fdm = limn→∞

∫
E fndm.

Lemma 3.2. For u0 in R, let Pu0 = {x ∈ C[0, t]|x(0) = u0}. Then
V̂ (Pu0) = 1.

Proof. The complex Borel measure on {u0} has of the form αδu0

where α is a complex number. So, for a dissection E1, E2, · · · , En

of Pu0 and for complex numbers α1, α2, · · · , αn with |α1| ≤ 1, |α2| ≤
1, · · · , |αn| ≤ 1,

∣∣
n∑

i=1

V (Ei)(αiδu0)
∣∣
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=
∣∣

n∑

i=1

αiVδu0
(Ei)

∣∣

≤
n∑

i=1

||Vδu0
(Ei)||

=
n∑

i=1

ωδu0
(Ei)

= 1.

Hence, V̂ (Pu0) ≤ 1. Trivially, V̂ (Pu0) ≥ Vδu0
(Pu0) = 1, so our result

proved.

Theorem 3.3. Let F be a subset of R and let P (F ) = {x ∈
C[0, t]|x(0) belongs to F}. Then F is finite if and only if V̂ (P (F ))
is finite if and only if P (F ) is integrable.

Proof. If F is finite, say F = {u1, u2, · · · , un} then by the subaddi-
tivity of the semivariation

V̂ (P (F ))

= V̂ (∪n
i=1P (ui))

≤
n∑

i=1

V̂ (P (ui))

=
n∑

i=1

ωδu0
(P (ui))

= n.

Hence, if F is finite then V̂ (P (F )) is finite.
Now, we suppose that F is infinite. Let m be a given natural number.
Let Fm be a subset of F such that a cardinal numbers of Fm is m, say
Fm = {u1, u2, · · · , um}. Then by the basic properties of the semivaria-
tion,

V̂ (P (F ))

≥ V̂ (P (Fm))

≥
m∑

i=1

||Vδui
(P (Fm))||
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=
m∑

i=1

ωδui
(P (ui))

= m.

Since m was arbitrary, V̂ (P (F )) is infinite. So, if V̂ (P (F )) is finite then
F is finite, as desired.

Theorem 3.4. V is an operator-valued measure countably additive
in the strong operator topology but is not an operator-valued measure
countably additive in the uniform operator topology.

Proof. From Theorem 2.3 in the above section, we know that V is
an operator-valued measure countably additive in the strong operator
topology. We suppose that V is an operator-valued measure count-
ably additive in the uniform operator topology. Then it is true that
limn→∞|V (Fn)| = 0 for a decreasing sequence 〈En〉 in B(C[0, t]) with
∩∞n=1En = ∅. But, letting En = P ((0, 1

n)) for a natural number n,
|V (Fn)| = 1 for all n ∈ N and ∩∞n=1En = ∅, a contradiction.

From [1], we have *-Theorem as follows. Let Y contain no subspace
isomorphic to the space c0, for example let Y be a weakly complete Ba-
nach space. Then the semivariation m̂ is continuous on an integrable
set, i.e., if 〈En〉 is a decreasing sequence of integrable sets with En ↓ ∅,
then limn→∞m̂(En) = 0.

By the *-Theorem and the contrapositive of Theorem 3.3, we obtain
the following theorems.

Theorem 3.6. M(R) is not a weakly complete Banach space i.e.,
there is a subspace of M(R) which is isomorphic to the space c0.

Theorem 3.7. If F is a finite subset of R, then V is continuous on
P (F ).

From [1], we have following lemma.

Lemma 3.8. Let the semivariation m̂ be continuous on an integrable
set, let A be an integrable set and let f be a bounded strongly measur-
able function. Then the function f · χA integrable.
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The next theorem is the main theorem in this article.

Theorem 3.9. (The Wiener integral integral formula) Let F =
{u1, u2, · · · , un} and let 0 = t0 < t1 < · · · < tn = t be given. Suppose H
is a function from P (F ) into M(R) such that H(x) = δx(0)hx(0)(x(t1),
x(t2), · · · , x(tn)) and huk

(k = 1, 2, · · · , n) are bounded measurable func-
tions on Rn. Then the Dobrakov integral

∫
P (F ) H(x)dV (x) exists and

the following equality holds.
[ ∫

P (F )
H(x)dV (x)

]
(E)

=
1∏n

i=1

√
2π(ti − ti−1)

n∑

k=1

∫

E

[ ∫

Rn−1

huk
(v1, v2, · · · , vn)

exp{−1
2

n∑

i=2

(vi − vi−1)2

ti − ti−1
}exp{−1

2
(v1 − uk)2

t1
}

dmL(v1) · · · dmL(vn−1)
]
dmL(vn)

for all Borel subset E of R.

Proof. By Lemma 3.8, H is integrable. Suppose that H(x) =
δx(0)χBx(0)

(x(t1), x(t2), · · · , x(tn)), here Buk
(k = 1, 2, · · · , n) are all

Borel subsets of Rn. Then for any Borel subset E of R,

[ ∫

P (F )
H(x)dV (x)

]
(E)

(1)
=

[ n∑

k=1

∫

Puk

H(x)dV (x)
]
(E)

(2)
=

n∑

k=1

Vδuk
(J−1(Buk

))(E)

(3)
=

n∑

k=1

ωδuk
(J−1(Buk

) ∩X−1(E))

(4)
=

1∏n
i=1

√
2π(ti − ti−1)

n∑

k=1

∫

E

[ ∫

Rn−1

χBuk
(v1, v2, · · · , vn)

exp{−1
2

n∑

i=2

(vi − vi−1)2

ti − ti−1
}exp{−1

2
(v1 − uk)2

t1
}
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dmL(v1) · · · dmL(vn−1)
]
dmL(vn)

By the basic properties of Dobrakov integral, Step (1) holds. Step (2)
follows from the definition of V . Step (3) results from the definition of
Vϕ. From (2.7), we have Step (4).
Using the bounded convergence theorem for Dobrakov integral [2, The-
orem 1, p260], we can prove our result in general case.

Example 3.10. Let t = 2 and let F = {3, 5}. Let H(x) =
δx(0)exp{−x(1)2}. Then for E ∈ B(R),

[ ∫

P (F )
H(x)dV (x)

]
(E)

=
∫

E

[ ∫

R

1√
(2π)2

exp{−u2
1 −

1
2
(u2 − u1)2 − 1

2
(u1 − 3)2}dmL(u1)

]
dmL(u2)

+
∫

E

[ ∫

R

1√
(2π)2

exp{−u2
1 −

1
2
(u2 − u1)2 − 1

2
(u1 − 5)2}dmL(u1)

]
dmL(u2)

=
e−3

2
√

2π

∫

E
exp{−3

8
(u2 − 1)2}du2 +

e−
25
3

2
√

2π

∫

E
exp{−3

8
(u2 − 5

3
)2}du2
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