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PROBABILITIES OF ANALOGUE OF WIENER PATHS
CROSSING CONTINUOUSLY DIFFERENTIABLE

CURVES

Kun Sik Ryu*

Abstract. Let ϕ be a complete probability measure on R, let mϕ

be the analogue of Wiener measure over paths on [0, T ] and let f(t)
be continuously differentiable on [0, T ]. In this note, we give the
analogue of Wiener measure mϕ of {x in C[0, T ]|x(0) < f(0) and
x(s0) ≥ f(s0) for some s0 in [0, T ]} by use of integral equation
techniques. This result is a generalization of Park and Paranjape’s
1974 result[1].

1. Introduction

Let T > 0 be given and let mw be the standard Wiener measure on
C0[0, T ], the space of all continuous functions x with x(0) = 0. From [4]
and [5], we can found the following equations ; for b ≥ 0,

mw({x in C0[0, T ]| sup
0≤t≤T

x(t) ≥ b})(1.1)

= 2mw({x in C0[0, T ]|x(T ) ≥ b})

= 2
∫ +∞

b/
√

T

1√
2π

e−
u2

2 du

and

mw({x in C0[0, T ]| sup
0≤t≤T

(x(t)− at) ≥ b})(1.2)

=
∫ +∞

(aT+b)/
√

T

1√
2π

e−
u2

2 du + e−2ab

∫ (aT−b)/
√

T

−∞

1√
2π

e−
u2

2 du.
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In 1974, Park and Paranjape proved the following theorem [1].

Theorem 1.1. Let f(t) be continuous on [0, T ], differentiable in
(0, T ), and satisfy |f ′(t)| ≤ C

tp (0 < p < 1
2) for some constant C. Then

for b ≥ −f(0),

mw({x in C0[0, T ]| sup
0≤t≤T

(x(t)− f(t)) ≥ b})(1.3)

= 2
∫ +∞

(f(T )+b)/
√

T

1√
2π

e−
u2

2 du

−4
∫ T

0
M(T, t)

( ∫ +∞

(f(T )+b)/
√

T

1√
2π

e−
u2

2 du
)
dt

+
∞∑

n=1

4n

∫ T

0
Kn(T, t)

[
2

∫ +∞

(f(t)+b)/
√

t

1√
2π

e−
u2

2 du

−4
∫ t

0
M(t, s)

∫ +∞

(f(s)+b)/
√

s

1√
2π

e−
u2

2 duds
]
dt

where

M(t, s) =

{
∂
∂s

∫ (f(t)−f(s))/
√

t−s
−∞

1√
2π

e−
u2

2 du (0 ≤ s < t ≤ T )
0 (0 ≤ t < s ≤ T )

,

K1(T, t) =
∫ T

t
M(T, s)M(s, t)ds

and

Kn+1(T, t) =
∫ T

t
Kn(T, s)K1(s, t)ds.

In 2002, the author and Dr. Im presented the definition and the
theories of analogue of Wiener measure mϕ on C[0, T ], the space of all
continuous functions on [0, T ]. This measure is a kind of generalization
of standard Wiener measure. Indeed, if ϕ is the Dirac measure δ0 at the
origin in R then mϕ is the standard Wiener measure mw.

The main purpose of this note is to find the analogue of Wiener
measure mϕ of {x in C[0, T ]| sup0≤t≤T (x(t)−f(t)) ≥ 0} for continuously
differentiable function f on [0, T ], which is a generalization of Theorem
1.1.

Throughout in this note,
∫ b
a f(u)du means the Henstock integral of

f .
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2. Statement of the result and proof

Let ϕ be a complete probability measure on R and let mϕ be the
analogue of Wiener measure on C[0, T ] for giving a measure ϕ.

From [2], we can find the following theorem.

Theorem 2.1. (The Wiener integration formula for analogue of
Wiener measure) If g : Rn+1 → C is a Borel measurable function then

the following equality holds.∫
C[a,b]

g(x(t0), x(t1), · · · , x(tn)) dωϕ(x)

∗=
∫

Rn+1

g(u0, u1, · · · , un)W (n + 1;~t;u0, u1, · · · , un)

d(
n∏

j=1

mL × ϕ)((u1, u2, · · · , un), u0)

where
∗= means that if one side exists then both sides exist and the two

values are equal.

Let f : [0, T ] → R be continuously differentiable and we let f(s) = 0
if s ≤ 0. For t in [0, T ], the limit lims→t−

f(t)−f(s)√
t−s

exists and equals to
0.
For x in C[0, T ], let τ(x) be the first hitting time of the curve f from
below by x, that is, x(τ(x)) = f(τ(x)). If x never reaches the curve f ,
we let τ(x) = +∞.

For t in [0, T ], let

At(2.1)
= {x in C[0, T ]|x(0) < f(0) and for some s0 in [0, t],

x(s0) ≥ f(s0)}.
Let G : R → R be a function with

G(t) =

 0 (t < 0)
mϕ(At) (0 ≤ t ≤ T )
mϕ(AT ) (T < t)

.

Lemma 2.2. G is increasing continuous with G(0) = 0.

Proof. It is clear that G is increasing and G(0) = 0. Let t be in
[0, T ) and let 〈tn〉 be a decreasing sequence in [0, T ] with limn→∞ tn =
t. Then At = ∩∞n=1Atn , so G(t) = mϕ(∩∞n=1Atn) = limn→∞ mϕ(Atn)
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= limn→∞ G(tn) which implies that G is right-continuous.
Let t be in (0, T ] and let 〈tn〉 be an increasing sequence in [0, T ] with
limn→∞ tn = t. Putting N = {x in C[0, T ]|x(0) < f(0) and τ(x) = t},
mϕ(N) = 0 and At = N ∪ (∪∞n=1Atn), so G(t) = mϕ(N ∪ (∪∞n=1Atn))
= mϕ(∪∞n=1Atn) = limn→∞ mϕ(Atn) = limn→∞ G(tn) which implies that
G is left-continuous. Hence, G is continuous.

Lemma 2.3. If 0 ≤ s < t ≤ T then τ(x) = s and x(t) − x(s) are
independent.

Proof. Let A and B be two Borel subsets of R. By the integration
formula for analogue of Wiener measure [2],

mϕ({x in C[0, T ]|x(s) is in A and x(t)− x(s) is in B})

=
∫

R

∫
R

∫
R

χ 1√
s
(A−u0)(v1)χ 1√

t−s
B(v2)

1
2π

exp{−1
2
(v2

1 + v2
2)}

dv1dv2dϕ(u0)
= mϕ({x in C[0, T ]|x(s) is in A})

·mϕ({x in C[0, T ]|x(t)− x(s) is in B}),

as desired.

The following theorem is one of main theorems in this note.

Theorem 2.4. For 0 < t ≤ T , G(t) satisfies the following Volterra’s
integral equation of the second kind

G(t)(2.2)

= 2
∫ f(0)

−∞

( ∫ +∞

f(t)

1√
2πt

exp{−(u1 − u0)2)
2t

}du1

)
dϕ(u0)

−2
∫ t

0
G(s)M(t, s)ds

where

M(t, s) =

{
∂
∂s

∫ (f(t)−f(s))/
√

t−s
−∞

1√
2π

e−
u2

2 du (0 ≤ s < t ≤ T )
0 (0 ≤ t ≤ s ≤ T )

.
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Proof. For 0 < t ≤ T ,

G(t)
= mϕ(At ∩ {x in C[0, T ]|x(t) ≥ f(t)})

+mϕ(At ∩ {x in C[0, T ]|x(t) < f(t)})
= mϕ({x in C[0, T ]|x(0) < f(0) and x(t) ≥ f(t)})

+mϕ({x in C[0, T ]|x(0) < f(0), x(t) < f(t) and
for some s0 in [0, t], x(s0) = f(s0)}),

mϕ({x in C[0, T ]|x(0) < f(0) and x(t) ≥ f(t)})

=
∫ f(0)

−∞

( ∫ +∞

f(t)

1√
2πt

exp{−(u1 − u0)2)
2t

}du1

)
dϕ(u0)

and

mϕ({x in C[0, T ]|x(0) < f(0), x(t) < f(t) and
for some s0 in [0, t], x(s0) = f(s0)})

(1)
=

∫ t

0
Eϕ(x(t) < f(t)|τ(x) = s)dG(s)

(2)
=

∫ t

0
Eϕ(x(t)− x(s) < f(t)− x(s)|τ(x) = s)dG(s)

(3)
=

∫ t

0
Eϕ(x(t)− x(s) < f(t)− x(s))dG(s)

(4)
=

∫ t

0

( ∫
C[0,T ]

χ{x in C[0,T ]|x(t)−x(s)<f(t)−x(s)}(x)dmϕ(x)
)
dG(s)

(5)
=

∫ t

0

( 1√
2π

∫ (f(t)−f(s))/
√

t−s

−∞
e−

v2

2 dv
)
dG(s).

Step (1) follows from the basic properties of conditional expectation.
From x(s) = f(s), we have Step (2). By Lemma 2.3, we obtain Step (3).
Using the Wiener integration formula for analogue of Wiener measure,
we can check Step (4). Step (5) come from the change of variables
theorem.
Putting

U(t, s) =

{
1√
2π

∫ (f(t)−f(s))/
√

t−s
−∞ e−

v2

2 dv for 0 ≤ s < t ≤ T
1
2 for t ≤ s ≤ T

,
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0

( 1√
2π

∫ (f(t)−f(s))/
√

t−s

−∞
e−

v2

2 dv
)
dG(s)

=
∫ t

0
U(t, s)dG(s)

(1)
= lim

s→t+
U(t, s) lim

s→t+
G(s)− lim

s→0−
U(t, s) lim

s→0−
G(s)−

∫ t

0
G(s)dU(t, s)

(2)
=

1
2
G(t)−

∫ t

0
G(s)

d

ds
U(t, s)ds.

By the integration by part, we have Step (1). Since lims→0− G(s) =
G(0) = 0, we obtain Step (2). Hence, we have the equality (2.2).

The equality (2.2) and the change of order of integration gives

G(t)(2.3)

= 2
∫ f(0)

−∞

( ∫ +∞

f(t)

1√
2πt

exp{−(u1 − u0)2)
2t

}du1

)
dϕ(u0)

−4
∫ t

0

[ ∫ f(0)

−∞

( ∫ +∞

f(s)

1√
2πs

exp{−(u1 − u0)2)
2s

}du1

)
dϕ(u0)

]
M(t, s)ds + 4

∫ t

0

( ∫ t

z
M(s, z)M(t, s)ds

)
G(z)dz

if M(s, z)M(t, s)G(z) is integrable on {(s, z)|0 ≤ z < s ≤ t}.

By [6], we obtain the main theorem in this note.

Theorem 2.5. If
∫ t
z M(s, z)M(t, s)ds is square integrable on {(z, t)|

0 ≤ z < t ≤ T} then the equation (2.2) has one and essentially only one
solution in the class L2. This solution is given by the formula

G(t)(2.4)

= 2
∫ f(0)

−∞

( ∫ +∞

f(t)

1√
2πt

exp{−(u1 − u0)2)
2t

}du1

)
dϕ(u0)

+
∞∑

n=1

(−1)n2n+1

∫ t

0

[ ∫ f(0)

−∞

( ∫ +∞

f(s)

1√
2πs

exp{−(u1 − u0)2)
2s

}

du1

)
dϕ(u0)

]
Hn(t, s)ds

where H1(t, s) = M(t, s) and Hn+1(t, s) =
∫ t
s Hn(t, z)H1(z, s)dz.
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Proof. We know that

M(t, s) =
1√

2π(t− s)

(
f ′(s) +

f(t)− f(s)
2(t− s)

exp{−(f(t)− f(s))2

2(t− s)
}
)

for 0 ≤ s < t ≤ T .
Since f is continuous differentiable, f ′(s) + f(t)−f(s)

2(t−s) exp{− (f(t)−f(s))2

2(t−s) }
is bounded on {(s, t)|0 ≤ s < t ≤ T}. So, for some K, |M(t, s)| ≤

1√
2π(t−s)

K and |M(s, z)| ≤ 1√
2π(s−z)

K. Hence

|
∫ t

z
M(s, z)M(t, s)ds|

≤ K2

2π
|
∫ t

z

1√
(s− z)(t− s)

ds|

=
K2

2
,

that is, |
∫ t
z M(s, z)M(t, s)ds|2 is a bounded function. Hence

∫ t
z M(s, z)

M(t, s)ds is square integrable on {(z, t)|0 ≤ z < t ≤ T}, as desired.

Remark 2.6. If ϕ = δ0 then the equation (1.3) and the equation
(2.4) are exactly same.

Remark 2.7. Let ϕ = δ0 and let f(t) = b be a constant function
with b ≥ 0. The M(t, s) = 0 for 0 ≤ s < t ≤ T , so we have the equation
(1.1), that is,

G(t) = 2
∫ +∞

b

1√
2π

exp{−u2

2t
}du.
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