• Title/Summary/Keyword: injectable hydrogel

Search Result 14, Processing Time 0.035 seconds

Thermosensitive Chitosan as an Injectable Carrier for Local Drug Delivery

  • Bae Jin-Woo;Go Dong-Hyun;Park Ki-Dong;Lee Seung-Jin
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.461-465
    • /
    • 2006
  • Two types of injectable system using thermosensitive chitosan (chitosan-g-NIPAAm), hydrogel and microparticles (MPs)-embedded hydrogel were developed as drug carriers for controlled release and their pharmaceutical potentials were investigated. 5-Fluorouracil (5-FU)-loaded, biodegradable PLGA MPs were prepared by a double emulsion method and then simply mixed with an aqueous solution of thermosensitive chitosan at room temperature. All 5-FU release rates from the hydrogel matrix were faster than bovine serum albumin (BSA), possibly due to the difference in the molecular weight of the drugs. The 5-FU release profile from MPs-embedded hydrogel was shown to reduce the burst effect and exhibit nearly zero-order release behavior from the beginning of each initial stage. Thus, these MPs-embedded hydrogels, as well as thermosensitive chitosan hydrogel, have promising potential as an injectable drug carrier for pharmaceutical applications.

Preparation and Biodegradation of Thermosensitive Chitosan Hydrogel as a Function of pH and Temperature

  • Han, Hee-Dong;Nam, Da-Eun;Seo, Dong-Hoan;Kim, Tae-Woo;Shin, Byung-Cheol;Choi, Ho-Suk
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.507-511
    • /
    • 2004
  • We have developed an injectable thermosensitive hydrogel for local drug delivery to treat cancers clinically. We selected chitosan as a polymer matrix because of its biocompatibility and biodegradability. Glycerol 2-phosphate disodium salt hydrate (${\beta}$-GP) was used to neutralize the chitosan solution to physiological pH. The chitosan solution displayed a sol-gel phase transition in a pH-and temperature-dependent manner and formed an endothermic hydrogel after subcutaneous injection into mouse in the presence of ${\beta}$-GP. Additionally, we evaluated the biodegradation of chitosan hydrogel in mice by measuring the volume of injected chitosan hydrogel after subcutaneous injection. The injected chitosan hydrogel in mice was sected and stained with hematoxylin-eosin reagent for histological observation to confirm biodegradation of the hydrogel by the infiltrated cells. Chitosan hydrogel systems that possess biocompatibility and biodegradability could be promising thermosensitive injectable materials useful as depot systems for local anti-cancer drug delivery.

Injectable Hydrogel as an Artificial Nucleus Pulposus in a Degenerative Intervertebral Disc (Injectable Hydrogel을 이용한 인공 Nucleus Pulposus의 제조)

  • Park, Jin-Hyun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.13-16
    • /
    • 2002
  • The Intervertebral disc is a composite structure made up of the nucleus pulposus (NP) core surrounded by the multi-layered fibers of the annulus fibrosis (AF)[1]. Water is drawn into the NP by the presence of hydrophilic proteins called proteoglycans [2]. The AF, with successive layers oriented in alternating directions, surrounds the NP. These layers are placed under tension as the NP absorbs water and swells [3]. (omitted)

  • PDF

In situ Gel Forming Stereocomplex Composed of Four-Arm PEG-PDLA and PEG-PLLA Block Copolymers

  • Jun, Yeo-Jin;Park, Kyung-Min;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Seung-Jin
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.704-710
    • /
    • 2008
  • Injectable hydrogels are quite promising materials due to their potential to minimize invasive implantation and this provides versatile fitness irrespective of the damaged regions and facilitates the incorporation of bioactive agents or cells. In situ gel formation through stereocomplex formation is a promising candidate for injectable hydrogels. In this paper, a new series of enantiomeric, four-arm, PEG-PLA block copolymers and their stereocomplexed hydrogels were prepared by bulk ring-opening polymerization of D-lactide and L-lactide, respectively, with stannous octoate as a catalyst. The prepared polymers were characterized by $^1H$ nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT IR) spectroscopy, gel permeation chromatography (GPC) and thermal gravitational analysis (TGA), confirming the tailored structure and chain lengths. The swelling and degradation behavior of the hydrogels formed from a selected copolymer series were observed in different concentrations. The degradation rate decreased with increasing polymer content in the solution. The rheological behavior indicated that the prepared hydrogel underwent in situ gelation and had favorable mechanical strength. In addition, its feasibility as an injectable scaffold was evaluated using a media dependence test for cell culture. A Tris solution was more favorable for in situ gel formation than PBS and DMEM solutions were. These results demonstrated the in situ formation of hydrogel through the construction of a stereocomplex with enantiomeric, 4-arm, PEG-PLA copolymers. Overall, enantiomeric, 4-arm, PEG-PLA copolymers are a new species of stereocomplexed hydrogels that are suitable for further research into injectable hydrogels.

Anti-tumour Efficiency of Chitosan Hydrogel Containing Anionic Liposomes as a Depot System (음이온성 리포솜이 결합된 키토산 겔의 항암효과)

  • Choi, Min-Soo;Han, Hee-Dong;Kim, Tae-Woo;Song, Chung-Kil;Park, Eun-Seok;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.1
    • /
    • pp.25-31
    • /
    • 2005
  • Depot system for local drug delivery using chitosan hydrogel has been developed to enhance the therapeutic efficacy and to prevent the severe side effect in whole body. Thus, we have prepared an injectable chitosan hydrogel containing liposomes to treat cancers clinically. Anionic liposomes incorporated to improve sustained release efficiency within chitosan hydrogel. The chitosan solution containing liposomes was designed to form a hydrogel complex at body temperature. The released behavior of doxorubicin from liposomes in chitosan hydrogel showed sustained-release caused by diffusion of doxorubicin from temperature responsive liposome into chitosan hydrogel. The chitosan hydorgel containing liposomes enhanced the therapeutic potency for the solid tumor in vivo system. Our results indicate that the liposomes in chitosan hydrogel represent a depot system for local drug delivery.

Development of Extracellular Matrix (ECM) based Dermal Filler (세포외기질(ECM) 생체소재 기반 필러 개발 연구)

  • Kim, Na Hyeon;Park, Sang-Hyug
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.137-142
    • /
    • 2019
  • Numerous efforts are being made to develop an ideal dermal filler that should be bio-compatibility, non-immunogenicity, long-lasting and biodegradable without a toxic secretion. Biomaterials of dermal fillers are hyaluronic acid filler, calcium filler, PMMA filler and collagen filler depending on the ingredient. Although hyaluronic acid (HA) is most widely used, it has shortages such as short shelf life and low mechanical strength compare to extracellular matrix (ECM). The cartilage ECM composed of collagen type II, proteoglycans, glycosaminoglycans (GAGs) and in a minor part with glycoproteins. In this study, we developed a cartilage ECM injectable filler capable of improving biocompatibility and longevity compared with hyaluronic acid (HA) fillers. The ECM hydrogel was cross-linked by the reaction of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) for mechanical enhancement. Prepared ECM filler was compared with cross-linked HA by butanediol diglycidyle ether (BDDE), which is the most widely used natural polymers for dermal filler. In the results, the articular cartilage ECM hydrogel has great potential as a dermal filler to improve the biophysical and biological performance.

Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering

  • Coburn, Jeannine;Gibson, Matt;Bandalini, Pierre Alain;Laird, Christopher;Mao, Hai-Quan;Moroni, Lorenzo;Seliktar, Dror;Elisseeff, Jennifer
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.213-222
    • /
    • 2011
  • The native extracellular matrix (ECM) consists of an integrated fibrous protein network and proteoglycan-based ground (hydrogel) substance. We designed a novel electrospinning technique to engineer a three dimensional fiber-hydrogel composite that mimics the native ECM structure, is injectable, and has practical macroscale dimensions for clinically relevant tissue defects. In a model system of articular cartilage tissue engineering, the fiber-hydrogel composites enhanced the biological response of adult stem cells, with dynamic mechanical stimulation resulting in near native levels of extracellular matrix. This technology platform was expanded through structural and biochemical modification of the fibers including hydrophilic fibers containing chondroitin sulfate, a significant component of endogenous tissues, and hydrophobic fibers containing ECM microparticles.

Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering

  • Lee, Jin Hyun
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.235-248
    • /
    • 2018
  • Background: Injectable hydrogels have been extensively researched for the use as scaffolds or as carriers of therapeutic agents such as drugs, cells, proteins, and bioactive molecules in the treatment of diseases and cancers and the repair and regeneration of tissues. It is because they have the injectability with minimal invasiveness and usability for irregularly shaped sites, in addition to typical advantages of conventional hydrogels such as biocompatibility, permeability to oxygen and nutrient, properties similar to the characteristics of the native extracellular matrix, and porous structure allowing therapeutic agents to be loaded. Main body: In this article, recent studies of injectable hydrogel systems applicable for therapeutic agent delivery, disease/cancer therapy, and tissue engineering have reviewed in terms of the various factors physically and chemically contributing to sol-gel transition via which gels have been formed. The various factors are as follows: several different non-covalent interactions resulting in physical crosslinking (the electrostatic interactions (e.g., the ionic and hydrogen bonds), hydrophobic interactions, ${\pi}$-interactions, and van der Waals forces), in-situ chemical reactions inducing chemical crosslinking (the Diels Alder click reactions, Michael reactions, Schiff base reactions, or enzyme-or photo-mediated reactions), and external stimuli (temperatures, pHs, lights, electric/magnetic fields, ultrasounds, or biomolecular species (e.g., enzyme)). Finally, their applications with accompanying therapeutic agents and notable properties used were reviewed as well. Conclusion: Injectable hydrogels, of which network morphology and properties could be tuned, have shown to control the load and release of therapeutic agents, consequently producing significant therapeutic efficacy. Accordingly, they are believed to be successful and promising biomaterials as scaffolds and carriers of therapeutic agents for disease and cancer therapy and tissue engineering.

Bone Formation Effect of the RGD-bioconjugated Mussel Adhesive Proteins Composite Hydroxypropyl Methylcellulose Hydrogel Based Nano Hydroxyapatite and Collagen Membrane in Rabbits

  • Kim, Dong-Myong;Kim, Hyun-Cho;Yeun, Chang-Ho;Lee, Che-Hyun;Lee, Un-Yun;Lim, Hun-Yu;Chang, Young-An;Kim, Young-Dae;Choi, Sung-Ju;Lee, Chong-Suk;Cha, Hyung Joon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.58-70
    • /
    • 2015
  • Injectable RGD-bioconjugated Mussel Adhesive Proteins (RGD-MAPs) composite hydroxypropyl methylcellulose (HPMC) hydrogels provide local periodontal tissue for bone filling in periodontal surgery. Previously we developed a novel type of injectable self-supported hydrogel (2 mg/ml of RGD-MAPs/HPMC) based porcine nano hydroxyapatite (MPH) for dental graft, which could good handling property, biodegradation or biocompatibility with the hydrogel disassembly and provided efficient cell adhesion activity and no inflammatory responses. Herein, the aim of this work was to evaluate bone formation following implantation of MPH and collagen membrane in rabbit calvarial defects. Eight male New Zealand rabbits were used and four circular calvarial defects were created on each animal. Defects were filled with different graft materials: 1) collagen membrane, 2) collagen membrane with MPH, 3) collagen membrane with bovine bone hydroxyapatite (BBH), and 4) control. The animals were sacrificed after 2 and 8 weeks of healing periods for histologic analysis. Both sites receiving MPH and BBH showed statistically increased augmented volume and new bone formation (p < 0.05). However, there was no statistical difference in new bone formation between the MPH, BBH and collagen membrane group at all healing periods. Within the limits of this study, collagen membrane with MPH was an effective material for bone formation and space maintaining in rabbit calvarial defects.