Thermosensitive Chitosan as an Injectable Carrier for Local Drug Delivery

  • Bae Jin-Woo (Dept. of Molecular Science & Technology, Ajou University) ;
  • Go Dong-Hyun (Dept. of Molecular Science & Technology, Ajou University) ;
  • Park Ki-Dong (Dept. of Molecular Science & Technology, Ajou University) ;
  • Lee Seung-Jin (Dept. of Pharmacy, College of Pharmacy, Ewha Womans University)
  • Published : 2006.08.01

Abstract

Two types of injectable system using thermosensitive chitosan (chitosan-g-NIPAAm), hydrogel and microparticles (MPs)-embedded hydrogel were developed as drug carriers for controlled release and their pharmaceutical potentials were investigated. 5-Fluorouracil (5-FU)-loaded, biodegradable PLGA MPs were prepared by a double emulsion method and then simply mixed with an aqueous solution of thermosensitive chitosan at room temperature. All 5-FU release rates from the hydrogel matrix were faster than bovine serum albumin (BSA), possibly due to the difference in the molecular weight of the drugs. The 5-FU release profile from MPs-embedded hydrogel was shown to reduce the burst effect and exhibit nearly zero-order release behavior from the beginning of each initial stage. Thus, these MPs-embedded hydrogels, as well as thermosensitive chitosan hydrogel, have promising potential as an injectable drug carrier for pharmaceutical applications.

Keywords

References

  1. E. L. Hedberg, A. Tang, R. S. Crowther, D. H. Carney, and A. G. Mikos, J. Control. Release, 84, 137 (2002) https://doi.org/10.1016/S0168-3659(02)00261-4
  2. M. J. Kepper, E. Shen, A. Determan, and B. Narashmhan, Biomaterials, 23, 4405 (2002) https://doi.org/10.1016/S0142-9612(02)00181-3
  3. D. I. Ha, S. B. Lee, M. S. Chong, and Y. M. Lee, Macromol. Res., 14, 87 (2006) https://doi.org/10.1007/BF03219073
  4. A. Hatefi and B. Amsden, J. Control. Release, 80, 9 (2002) https://doi.org/10.1016/S0168-3659(02)00008-1
  5. J. E. Chung, M. Yokoyama, and T. Okano, J. Control. Release, 65, 93 (2000) https://doi.org/10.1016/S0168-3659(99)00242-4
  6. K. Makino, J. Hiyoshi, and H. Ohshima, Colloid Surface B: 20, 341 (2001) https://doi.org/10.1016/S0927-7765(00)00201-0
  7. Y. H. Kim, Y. H. Bae, and S. W. Kim, J. Control. Release, 28, 143 (1994) https://doi.org/10.1016/0168-3659(94)90161-9
  8. I. Nam, J. W. Bae, K. S. Jee, J. W. Lee, K. D. Park, and S. H. Yuk, Macromol. Res., 10, 115 (2002) https://doi.org/10.1007/BF03218300
  9. E. Ruel-Gariepy, A. Chenite, C. Chaput, S. Guirguies, and J. C. Leroux, Int. J. Pharm., 203, 89 (2000) https://doi.org/10.1016/S0378-5173(00)00428-2
  10. C.H. Kim, H. S.Park, Y. J. Gin, Y. S. Son, S. H. Lim, Y. J. Choi, K. S. Park, and C. W. Park, Macromol. Res., 12, 367 (2004) https://doi.org/10.1007/BF03218413
  11. M. L. Lorenzo-Lamosa, C. Remunan-Lopez, J. L. Vila-Jato, and M. J. Alonso, J. Control. Release, 52, 109 (1998) https://doi.org/10.1016/S0168-3659(97)00203-4
  12. M. K. Yeh, S. M. Tung, D. W. Lu, J. L. Chen, and C. H. Chiang, J. Microencapsul., 18, 507 (2001) https://doi.org/10.1080/02652040010018100
  13. P. A. McCarron, A. D. Woolfson, and S. M. Keating, J. Pharm. Pharmacol., 52, 1451 (2000) https://doi.org/10.1211/0022357001777658
  14. M. Boisdron-Celle, Ph. Menei, and J. P. Benoit, J. Pharm. Pharmacol. 47, 108 (1995) https://doi.org/10.1111/j.2042-7158.1995.tb05760.x
  15. R. A. Jain, Biomaterials, 21, 2475 (2000) https://doi.org/10.1016/S0142-9612(00)00115-0
  16. J. W. Lee, M. C. Jung, H. D. Park, K. D. Park, and G. H. Ryu, J. Biomater Sci. Polym. Edn, 15, 1065 (2004) https://doi.org/10.1163/1568562041526496
  17. J. H. Cho, S. H. Kim, K. D. Park, M. C. Jung, W. I. Yang, S. W. Han, J. Y. Noh, and J. W. Lee, Biomaterials, 25, 5743 (2004) https://doi.org/10.1016/j.biomaterials.2004.01.051
  18. Jamshidi K., S. H. Hyon, and Y. Ikada, Polymer, 29, 2229 (1988) https://doi.org/10.1016/0032-3861(88)90116-4
  19. P. K. Smith, R. I. Krohn, and G. T. Hermanson, Anal. Biochem., 150, 76 (1985) https://doi.org/10.1016/0003-2697(85)90442-7