Browse > Article
http://dx.doi.org/10.12989/sss.2011.7.3.213

Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering  

Coburn, Jeannine (Department of Biomedical Engineering, Johns Hopkins University)
Gibson, Matt (Department of Biomedical Engineering, Johns Hopkins University)
Bandalini, Pierre Alain (Ecole Polytechnique)
Laird, Christopher (Department of Biomedical Engineering, Johns Hopkins University)
Mao, Hai-Quan (Department of Materials Science and Engineering, Johns Hopkins University)
Moroni, Lorenzo (Department of Biomedical Engineering, Johns Hopkins University)
Seliktar, Dror (Faculty of Biomedical Engineering, Technion - Israel Institute of Technology)
Elisseeff, Jennifer (Department of Biomedical Engineering, Johns Hopkins University)
Publication Information
Smart Structures and Systems / v.7, no.3, 2011 , pp. 213-222 More about this Journal
Abstract
The native extracellular matrix (ECM) consists of an integrated fibrous protein network and proteoglycan-based ground (hydrogel) substance. We designed a novel electrospinning technique to engineer a three dimensional fiber-hydrogel composite that mimics the native ECM structure, is injectable, and has practical macroscale dimensions for clinically relevant tissue defects. In a model system of articular cartilage tissue engineering, the fiber-hydrogel composites enhanced the biological response of adult stem cells, with dynamic mechanical stimulation resulting in near native levels of extracellular matrix. This technology platform was expanded through structural and biochemical modification of the fibers including hydrophilic fibers containing chondroitin sulfate, a significant component of endogenous tissues, and hydrophobic fibers containing ECM microparticles.
Keywords
electrospin; fibers; hydrogel; cartilage; extracellular matrix; biomimetic; tissue engineering;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Awad, H.A., Wickham, M.Q., Leddy, H.A., Gimble, J.M. and Guilak, F. (2004), "Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds", Biomaterials 25(16), 3211-3222.   DOI   ScienceOn
2 Chiara, G. and Ranieri, C. (2009), "Cartilage and bone extracellular matrix", Curr. Pharm. Design, 15(12), 1334- 1348.   DOI   ScienceOn
3 Engler, A.J., Sen, S., Sweeney, H.L. and Discher, D.E. (2006), "Matrix elasticity directs stem cell lineage specification", Cell, 126(4), 677-689.   DOI   ScienceOn
4 Farndale, R.W., Buttle, D.J. and Barrett, A.J. (1986), "Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue", Biochim. Biophys. Acta. Gen. Sub., 883(2),173-177.   DOI   ScienceOn
5 Gong, J.P., Katsuyama, Y., Kurokawa, T. and Osada, Y. (2003), "Double-network hydrogels with extremely high mechanical strength", Adv. Mater., 15(14), 1155-1158.   DOI   ScienceOn
6 Gregory, S.S. and Annette, W. (2009), "Interactions between extracellular matrix and growth factors in wound healing", Wound Repair Regen., 17(2), 153-162.   DOI   ScienceOn
7 Hannouche, D., Terai, H., Fuchs, J.R., Terada, S., Zand, S., Nasseri, B.A., Petite, H., Sedel, L. and Vacanti, J.P. (2007), "Engineering of implantable cartilaginous structures from bone marrow-derived mesenchymal stem cells", Tissue Eng., 13(1), 87-99.   DOI   ScienceOn
8 Janna, K.M., John, T.C., Christopher, G.W., Kristin, E.M. and Marc, E.L. (2007), "Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells", Stem Cells, 25(3), 655-663.
9 Kim, Y.-J., Sah, R.L.Y., Doong, J.Y.H. and Grodzinsky, A.J. (1988), "Fluorometric assay of DNA in cartilage explants using Hoechst 33258", Anal. Biochem., 174(1), 168-176.   DOI   ScienceOn
10 Lee, H.J., Yu, C., Chansakul, T., Hwang, N.S., Varghese, S., Yu, S.M. and Elisseeff, J.H. (2008), "Enhanced chondrogenesis of mesenchymal stem cells in collagen mimetic peptide-mediated microenvironment", Tissue Eng., 14(11), 1843-1851.   DOI   ScienceOn
11 Li, Q., Wang, D.A. and Elisseeff, J.H. (2003), "Heterogeneous-phase reaction of glycidyl methacrylate and chondroitin sulfate: Mechanism of ring-opening-transesterification Competition", Macromolecules, 36(7), 2556-2562.   DOI   ScienceOn
12 Li, W., Cooper, J.A., Mauck, R.L. and Tuan, R.S. (2006), "Fabrication and characterization of six electrospun poly(a-hydroxy ester)-based fibrous scaffolds for tissue engineering applications", Acta Biomater., 2(4), 377-385.   DOI   ScienceOn
13 Moutos, F.T. and Guilak, F. (2010), "Functional properties of cell-seeded three-dimensionally woven poly( $\varepsilon$ - caprolactone) scaffolds for cartilage tissue engineering", Tissue Eng., 16(4), 1291-1301.   DOI   ScienceOn
14 Marijnissen, W.J., van Osch, G.J., Aigner, J., van der Veen, S.W., Hollander, A.P., Verwoerd-Verhoef, H.L. and Verhaar, J.A. (2002), "Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering", Biomaterials, 23(6), 1511-1517.   DOI   ScienceOn
15 Martens, P. and Anseth, K.S. (2000), "Characterization of hydrogels formed from acrylate modified poly(vinyl alcohol) macromers", Polymer, 41(21), 7715-7722.   DOI   ScienceOn
16 Moutos, F.T., Freed, L.E. and Guilak, F. (2007), "A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage", Nat. Mater., 6(2), 162-167.   DOI   ScienceOn
17 Mow, V.C., Ratcliffe, A. and Poole, A.R. (1992), "Carilage and diarthrodial joints as paradigms for hierarchical materials and structures", Biomaterials, 13(2), 67-97.   DOI   ScienceOn
18 Nakayama, A., Kakugo, A., Gong, J.P., Osada, Y., Takai, M., Erata T. and Kawano, S. (2004), "High mechanical strength double-network hydrogel with bacterial cellulose", Adv. Funct. Mater., 14(11), 1124-1128.   DOI   ScienceOn
19 Place, E.S., Evans, N.D. and Stevens, M.M. (2009), "Complexity in biomaterials for tissue engineering", Nat. Mater., 8(6), 457-470.   DOI   ScienceOn
20 Ramadoss, P. and Nagamani, K. (2009), "Behavior of high-strength fiber reinforced concrete plates under inplane and transverse loads", Struct. Eng. Mech., 31(4), 371-382.   DOI
21 Schmidt, O., Mizrahi, J., Elisseeff, J. and Seliktar, D. (2006), "Immobilized fibrinogen in PEG hydrogels does not improve chondrocyte-mediated matrix deposition in response to mechanical stimulation", Biotechnol. Bioeng., 95(6), 1061-1069.   DOI   ScienceOn
22 Segawa, K. and Takiguchi, R. (1992), "Ultrastructural alteration of cartilaginous fibril arrangement in the rat mandibular condyle as revealed by high-resolution scanning electron microscopy", Anat. Rec., 234(4), 493-499.   DOI   ScienceOn
23 Tzezana, R., Zussman, E. and Levenberg, S. (2008), "A layered ultra-porous scaffold for tissue engineering, created via a hydrospinning method", Tissue Eng., 14(4), 281-288.   DOI   ScienceOn
24 Slivka, M.A., Leatherbury, N.C., Kieswetter, K. and Niederauer, G.G. (2001), "Porous, resorbable, fiberreinforced scaffolds tailored for articular cartilage repair", Tissue Eng., 7(6), 767-780.   DOI   ScienceOn
25 Strehin, I., Winnette McIntosh, A., Oliver, S., Afrah, S. and Elisseeff, J. H. (2009), "Synthesis and characterization of a chondroitin sulfate-polyethylene glycol corneal adhesive", J. Cataract Refr. Surg., 35(3), 567-576.   DOI   ScienceOn
26 Tsang, K., Cheung, M., Chan, D. and Cheah, K. (2010), "The developmental roles of the extracellular matrix: beyond structure to regulation", Cell Tissue Res., 339(1), 93-110.   DOI   ScienceOn
27 Vanessa, T., Nathaniel, H., Lorenzo, M., Hyung, B.P., Zijun, Z., Joseph, M., Dror, S. and Jennifer, E. (2007), "Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels", Stem Cells, 25(11), 2730-2738.   DOI   ScienceOn
28 Varghese, S., Hwang, N.S., Canver, A.C., Theprungsirikul, P., Lin, D.W. and Elisseeff, J. (2008), "Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells", Matrix Biol., 27(1), 12-21.   DOI   ScienceOn
29 Wagenseil, J.E. and Mecham, R.P. (2009), "Vascular extracellular matrix and arterial mechanics", Physiol. Rev., 89(3), 957-989.   DOI   ScienceOn
30 Williams, C.G., Kim, T.K., Taboas, A., Malik, A., Manson, P. and Elisseeff, J. (2003), "In Vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel", Tissue Eng., 9(4), 679-688.   DOI   ScienceOn
31 Williams, E.M., Graham, S.S., Akers, S.A., Reed, P.A. and Rushing, T.S. (2010), "Constitutive property behavior of an untra-high-performance concrete with and without steel fibers", Comput.Concrete, 7(2), 191-202.   DOI
32 Winer, J.P., Janmey, P.A., McCormick, M.E. and Funaki, M. (2009), "Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli", Tissue Eng., 15(1), 147-154.   DOI   ScienceOn
33 Yang, F., Williams, C.G., Wang, D.A., Lee, H., Manson, P.N. and Elisseeff, J. (2005), "The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells", Biomaterials, 26(30), 5991-5998.   DOI   ScienceOn
34 Woodfield, T.B.F., Malda, J., de Wijn, J., Péters, F., Riesle, J. and van Blitterswijk, C.A. (2004), "Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique", Biomaterials, 25(18), 4149-4161.   DOI   ScienceOn