DOI QR코드

DOI QR Code

Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering

  • Lee, Jin Hyun (Polymer Technology Institute, Sungkyunkwan University)
  • Received : 2018.06.11
  • Accepted : 2018.09.06
  • Published : 2018.12.31

Abstract

Background: Injectable hydrogels have been extensively researched for the use as scaffolds or as carriers of therapeutic agents such as drugs, cells, proteins, and bioactive molecules in the treatment of diseases and cancers and the repair and regeneration of tissues. It is because they have the injectability with minimal invasiveness and usability for irregularly shaped sites, in addition to typical advantages of conventional hydrogels such as biocompatibility, permeability to oxygen and nutrient, properties similar to the characteristics of the native extracellular matrix, and porous structure allowing therapeutic agents to be loaded. Main body: In this article, recent studies of injectable hydrogel systems applicable for therapeutic agent delivery, disease/cancer therapy, and tissue engineering have reviewed in terms of the various factors physically and chemically contributing to sol-gel transition via which gels have been formed. The various factors are as follows: several different non-covalent interactions resulting in physical crosslinking (the electrostatic interactions (e.g., the ionic and hydrogen bonds), hydrophobic interactions, ${\pi}$-interactions, and van der Waals forces), in-situ chemical reactions inducing chemical crosslinking (the Diels Alder click reactions, Michael reactions, Schiff base reactions, or enzyme-or photo-mediated reactions), and external stimuli (temperatures, pHs, lights, electric/magnetic fields, ultrasounds, or biomolecular species (e.g., enzyme)). Finally, their applications with accompanying therapeutic agents and notable properties used were reviewed as well. Conclusion: Injectable hydrogels, of which network morphology and properties could be tuned, have shown to control the load and release of therapeutic agents, consequently producing significant therapeutic efficacy. Accordingly, they are believed to be successful and promising biomaterials as scaffolds and carriers of therapeutic agents for disease and cancer therapy and tissue engineering.

Keywords

References

  1. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18-23. https://doi.org/10.1016/j.addr.2012.09.010
  2. Wang C, Varshney RR, Wang DA. Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv Drug Deliv Rev. 2010;62(7-8):699-710. https://doi.org/10.1016/j.addr.2010.02.001
  3. Oliva N, Conde J, Wang K, Artzi N. Designing hydrogels for on-demand therapy. Acc Chem Res. 2017;50(4):669-79. https://doi.org/10.1021/acs.accounts.6b00536
  4. Choi M, Choi JW, Kim S, Nizamoglu S, Hahn SK, Yun SH. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat Photonics. 2013;7:987. https://doi.org/10.1038/nphoton.2013.278
  5. Wang C, Stewart RJ, KopeCek J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature. 1999;397:417. https://doi.org/10.1038/17092
  6. Sun TL, Kurokawa T, Kuroda S, Ihsan AB, Akasaki T, Sato K, Haque MA, Nakajima T, Gong JP. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater. 2013;12:932. https://doi.org/10.1038/nmat3713
  7. Pang X, Wu J, Chu C-C, Chen X. Development of an arginine-based cationic hydrogel platform: synthesis, characterization and biomedical applications. Acta Biomater. 2014;10(7):3098-107. https://doi.org/10.1016/j.actbio.2014.04.002
  8. Atzet S, Curtin S, Trinh P, Bryant S, Ratner B. Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds. Biomacromolecules. 2008;9(12):3370-7. https://doi.org/10.1021/bm800686h
  9. Cipriano BH, Banik SJ, Sharma R, Rumore D, Hwang W, Briber RM, Raghavan SR. Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules. 2014;47(13):4445-52. https://doi.org/10.1021/ma500882n
  10. Omidian H, Rocca JG, Park K. Advances in superporous hydrogels. J Control Release. 2005;102(1):3-12. https://doi.org/10.1016/j.jconrel.2004.09.028
  11. Garcia-Millan E, Koprivnik S, Otero-Espinar FJ. Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications. Int J Pharm. 2015;487(1):260-9. https://doi.org/10.1016/j.ijpharm.2015.04.037
  12. Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release. 2005;109(1):256-74. https://doi.org/10.1016/j.jconrel.2005.09.023
  13. Peppas NA, Van Blarcom DS. Hydrogel-based biosensors and sensing devices for drug delivery. J Control Release. 2016;240:142-50. https://doi.org/10.1016/j.jconrel.2015.11.022
  14. Calvert P. Hydrogels for Soft Machines. Adv Mater. 2009;21(7):743-56. https://doi.org/10.1002/adma.200800534
  15. Kirschner CM, Anseth KS. Hydrogels in healthcare: from static to dynamic material microenvironments. Acta Mater. 2013;61(3):931-44. https://doi.org/10.1016/j.actamat.2012.10.037
  16. Baumann MD, Kang CE, Stanwick JC, Wang Y, Kim H, Lapitsky Y, Shoichet MS. An injectable drug delivery platform for sustained combination therapy. J Control Release. 2009;138(3):205-13. https://doi.org/10.1016/j.jconrel.2009.05.009
  17. Moreira HR, Munarin F, Gentilini R, Visai L, Granja PL, Tanzi MC, Petrini P. Injectable pectin hydrogels produced by internal gelation: pH dependence of gelling and rheological properties. Carbohydr Polym. 2014;103:339-47. https://doi.org/10.1016/j.carbpol.2013.12.057
  18. Yan C, Pochan DJ. Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem Soc Rev. 2010;39(9):3528-40. https://doi.org/10.1039/b919449p
  19. Ishii S, Kaneko J, Nagasaki Y. Development of a long-acting, protein-loaded, redox-active, injectable gel formed by a polyion complex for local protein therapeutics. Biomaterials. 2016;84:210-8. https://doi.org/10.1016/j.biomaterials.2016.01.029
  20. Ren Y, Zhao X, Liang X, Ma PX, Guo B. Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson's disease. Int J Biol Macromol. 2017;105:1079-87. https://doi.org/10.1016/j.ijbiomac.2017.07.130
  21. Ruirui X, Kai L, Tifeng J, Ning Z, Kai M, Ruiyun Z, Qianli Z, Guanghui M, Xuehai Y. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor Photothermal/photodynamic therapy. Adv Mater. 2016;28(19):3669-76. https://doi.org/10.1002/adma.201600284
  22. Zubik K, Singhsa P, Wang Y, Manuspiya H, Narain R. Thermo-responsive poly (N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers. 2017;9(4):119. https://doi.org/10.3390/polym9040119
  23. Baral A, Roy S, Dehsorkhi A, Hamley IW, Mohapatra S, Ghosh S, Banerjee A. Assembly of an injectable noncytotoxic peptide-based Hydrogelator for sustained release of drugs. Langmuir. 2014;30(3):929-36. https://doi.org/10.1021/la4043638
  24. Feng H, Du Y, Tang F, Ji N, Zhao X, Zhao H, Chen Q. Silver ions blocking crystallization of guanosine-based hydrogel for potential antimicrobial applications. RSC Adv. 2018;8(28):15842-52. https://doi.org/10.1039/C8RA02500B
  25. Cinar G, Ozdemir A, Hamsici S, Gunay G, Dana A, Tekinay AB, Guler MO. Local delivery of doxorubicin through supramolecular peptide amphiphile nanofiber gels. Biomater Sci. 2017;5(1):67-76. https://doi.org/10.1039/C6BM00656F
  26. Payyappilly S, Dhara S, Chattopadhyay S. Thermoresponsive biodegradable PEG-PCL-PEG based injectable hydrogel for pulsatile insulin delivery. J Biomed Mater Res A. 2014;102(5):1500-9. https://doi.org/10.1002/jbm.a.34800
  27. Li G, Wu J, Wang B, Yan S, Zhang K, Ding J, Yin J. Self-healing supramolecular self-assembled hydrogels based on poly(l-glutamic acid). Biomacromolecules. 2015;16(11):3508-18. https://doi.org/10.1021/acs.biomac.5b01287
  28. Loebel C, Rodell CB, Chen MH, Burdick JA. Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nat Protoc. 2017;12:1521. https://doi.org/10.1038/nprot.2017.053
  29. Sim HJ, Thambi T, Lee DS. Heparin-based temperature-sensitive injectable hydrogels for protein delivery. J Mater Chem B. 2015;3(45):8892-901. https://doi.org/10.1039/C5TB01399B
  30. Pacelli S, Acosta F, Chakravarti AR, Samanta SG, Whitlow J, Modaresi S, Ahmed RPH, Rajasingh J, Paul A. Nanodiamond-based injectable hydrogel for sustained growth factor release: preparation, characterization and in vitro analysis. Acta Biomater. 2017;58:479-91. https://doi.org/10.1016/j.actbio.2017.05.026
  31. Li X, Fu M, Wu J, Zhang C, Deng X, Dhinakar A, Huang W, Qian H, Ge L. pHsensitive peptide hydrogel for glucose-responsive insulin delivery. Acta Biomater. 2017;51:294-303. https://doi.org/10.1016/j.actbio.2017.01.016
  32. Ye X, Li X, Shen Y, Chang G, Yang J, Gu Z. Self-healing pH-sensitive cytosine- and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding. Polymer. 2017;108:348-60. https://doi.org/10.1016/j.polymer.2016.11.063
  33. Qu J, Zhao X, Ma PX, Guo B. Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized "smart" drug release. Acta Biomater. 2018;72:55-69. https://doi.org/10.1016/j.actbio.2018.03.018
  34. Wu H, Song L, Chen L, Zhang W, Chen Y, Zang F, Chen H, Ma M, Gu N, Zhang Y. Injectable magnetic supramolecular hydrogel with magnetocaloric liquid-conformal property prevents the post-operative recurrence in a breast cancer model. Acta Biomater. 2018;74:302-11. https://doi.org/10.1016/j.actbio.2018.04.052
  35. Ballios Brian G, Cooke Michael J, Donaldson L, Coles Brenda LK, Morshead Cindi M, van der Kooy D, Shoichet Molly S. A Hyaluronan-based injectable hydrogel improves the survival and integration of stem cell progeny following transplantation. Stem Cell Reports. 2015;4(6):1031-45. https://doi.org/10.1016/j.stemcr.2015.04.008
  36. KP M, SR A, OL P, LP J, Emanual M, KK L, KA M. Controlling the Release of Small, Bioactive Proteins via Dual Mechanisms with Therapeutic Potential. Adv Healthc Mater. 2017;6(24):1700713. https://doi.org/10.1002/adhm.201700713
  37. Wu C, Zhao J, Hu F, Zheng Y, Yang H, Pan S, Shi S, Chen X, Wang S. Design of injectable agar-based composite hydrogel for multi-mode tumor therapy. Carbohydr Polym. 2018;180:112-21. https://doi.org/10.1016/j.carbpol.2017.10.024
  38. Huebsch N, Kearney CJ, Zhao X, Kim J, Cezar CA, Suo Z, Mooney DJ. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc Natl Acad Sci. 2014;111(27):9762-7. https://doi.org/10.1073/pnas.1405469111
  39. VJ A, Fayekah A, Nicole P, Yasemin K, Varun V, NL S, HB D, Yusuf K. Mechanically loading cell/hydrogel constructs with low-intensity pulsed ultrasound for bone repair. Tissue Eng Part A. 2018;24(3-4):254-63. https://doi.org/10.1089/ten.tea.2016.0547
  40. Turner PA, Thiele JS, Stegemann JP. Growth factor sequestration and enzyme-mediated release from genipin-crosslinked gelatin microspheres. J Biomater Sci Polym Ed. 2017;28(16):1826-46. https://doi.org/10.1080/09205063.2017.1354672
  41. Wickremasinghe NC, Kumar VA, Hartgerink JD. Two-step self-assembly of liposome-multidomain peptide nanofiber hydrogel for time-controlled release. Biomacromolecules. 2014;15(10):3587-95. https://doi.org/10.1021/bm500856c
  42. Gregoritza M, Brandl FP. The Diels-Alder reaction: a powerful tool for the design of drug delivery systems and biomaterials. Eur J Pharm Biopharm. 2015;97:438-53. https://doi.org/10.1016/j.ejpb.2015.06.007
  43. KS T, DR M, Pascal J, Jianyu L, BR K, LS A, JN S, MD J. Click-crosslinked injectable gelatin hydrogels. Adv Healthc Mater. 2016;5(5):541-7. https://doi.org/10.1002/adhm.201500757
  44. Bai X, Lu S, Cao Z, Ni B, Wang X, Ning P, Ma D, Wei H, Liu M. Dual crosslinked chondroitin sulfate injectable hydrogel formed via continuous Diels-Alder (DA) click chemistry for bone repair. Carbohydr Polym. 2017;166:123-30. https://doi.org/10.1016/j.carbpol.2017.02.062
  45. Gregoritza M, Messmann V, Abstiens K, Brandl FP, Goepferich AM. Controlled antibody release from degradable Thermoresponsive hydrogels cross-linked by Diels-Alder chemistry. Biomacromolecules. 2017;18(8):2410-8. https://doi.org/10.1021/acs.biomac.7b00587
  46. Mather BD, Viswanathan K, Miller KM, Long TE. Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci. 2006;31(5):487-531. https://doi.org/10.1016/j.progpolymsci.2006.03.001
  47. Nair DP, Podgorski M, Chatani S, Gong T, Xi W, Fenoli CR, Bowman CN. The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater. 2014;26(1):724-44. https://doi.org/10.1021/cm402180t
  48. Southan A, Lang T, Schweikert M, Tovar GM, Wege C, Eiben S. Covalent incorporation of tobacco mosaic virus increases the stiffness of poly (ethylene glycol) diacrylate hydrogels. RSC Adv. 2018;8(9):4686-94. https://doi.org/10.1039/C7RA10364F
  49. Wei Z, Yang JH, Liu ZQ, Xu F, Zhou JX, Zrinyi M, Osada Y, Chen YM. Novel biocompatible polysaccharide-based self-healing hydrogel. Adv Funct Mater. 2015;25(9):1352-9. https://doi.org/10.1002/adfm.201401502
  50. Xin Y, Yuan J. Schiff's base as a stimuli-responsive linker in polymer chemistry. Polym Chem. 2012;3(11):3045-55. https://doi.org/10.1039/c2py20290e
  51. Cao L, Cao B, Lu C, Wang G, Yu L, Ding J. An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering. J Mater Chem B. 2015;3(7):1268-80. https://doi.org/10.1039/C4TB01705F
  52. Chen H, Xing X, Tan H, Jia Y, Zhou T, Chen Y, Ling Z, Hu X. Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Mater Sci Eng C. 2017;70:287-95. https://doi.org/10.1016/j.msec.2016.08.086
  53. Wu X, He C, Wu Y, Chen X. Synergistic therapeutic effects of Schiff's base crosslinked injectable hydrogels for local co-delivery of metformin and 5- fluorouracil in a mouse colon carcinoma model. Biomaterials. 2016;75:148-62. https://doi.org/10.1016/j.biomaterials.2015.10.016
  54. Amsden BG, Sukarto A, Knight DK, Shapka SN. Methacrylated glycol chitosan as a Photopolymerizable biomaterial. Biomacromolecules. 2007;8(12):3758-66. https://doi.org/10.1021/bm700691e
  55. ARU A, MP J, PWL A, GR A. Tailoring 3D hydrogel systems for neuronal encapsulation in living electrodes. J Polym Sci B Polym Phys. 2018;56(4):273-87. https://doi.org/10.1002/polb.24558
  56. Aleksander S. V. MS, Kathryn C, David M, Anthony a, Shay S: a tunable hydrogel system for long-term release of cell-secreted cytokines and bioprinted in situ wound cell delivery. J Biomed Mater Res B Appl Biomater. 2017;105(7):1986-2000. https://doi.org/10.1002/jbm.b.33736
  57. Jin R, Hiemstra C, Zhong Z, Feijen J. Enzyme-mediated fast in situ formation of hydrogels from dextran-tyramine conjugates. Biomaterials. 2007;28(18):2791-800. https://doi.org/10.1016/j.biomaterials.2007.02.032
  58. Gao Y, Luo Q, Qiao S, Wang L, Dong Z, Xu J, Liu J. Enzymetically regulating the self-healing of protein hydrogels with high healing efficiency. Angew Chem Int Ed. 2014;53(35):9343-6. https://doi.org/10.1002/anie.201404531
  59. Xu K, Narayanan K, Lee F, Bae KH, Gao S, Kurisawa M. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D. Acta Biomater. 2015;24:159-71. https://doi.org/10.1016/j.actbio.2015.06.026
  60. Wichterle O, LIM D. Hydrophilic gels for biological use. Nature. 1960;185(4706):117-8. https://doi.org/10.1038/185117a0
  61. Paradiso P, Colaco R, MJL G, Krastev R, Saramago B, SA P. Drug release from liposome coated hydrogels for soft contact lenses: the blinking and temperature effect. J Biomed Mater Res B Appl Biomater. 2017;105(7):1799-807. https://doi.org/10.1002/jbm.b.33715
  62. Hu X, Tan H, Hao L. Functional hydrogel contact lens for drug delivery in the application of oculopathy therapy. J Mech Behav Biomed Mater. 2016;64:43-52. https://doi.org/10.1016/j.jmbbm.2016.07.005
  63. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Langer R. Transdermal photopolymerization for minimally invasive implantation. Proc Natl Acad Sci. 1999;96(6):3104-7. https://doi.org/10.1073/pnas.96.6.3104
  64. Heskins M, Guillet JE. Solution properties of poly(N-isopropylacrylamide). J Macromol Sci A, Chem. 1968;2(8):1441-55. https://doi.org/10.1080/10601326808051910
  65. Bajaj G, Kim MR, Mohammed SI, Yeo Y. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors. J Control Release. 2012;158(3):386-92. https://doi.org/10.1016/j.jconrel.2011.12.001
  66. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. JControlled Release. 2001;73(2):121-36. https://doi.org/10.1016/S0168-3659(01)00248-6
  67. Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci. 2015;125:75-84. https://doi.org/10.1016/j.ces.2014.08.046
  68. VC A. The history of tissue engineering. J Cell Mol Med. 2006;10(3):569-76. https://doi.org/10.1111/j.1582-4934.2006.tb00421.x
  69. Langer R, Vacanti J. Tissue engineering. Science. 1993;260(5110):920-6. https://doi.org/10.1126/science.8493529

Cited by

  1. Amphiphilic hydrogels for biomedical applications vol.7, pp.18, 2019, https://doi.org/10.1039/c9tb00073a
  2. Core-Shell-Shell Nanoparticles for NIR Fluorescence Imaging and NRET Swelling Reporting of Injectable or Implantable Gels vol.20, pp.7, 2019, https://doi.org/10.1021/acs.biomac.9b00463
  3. Mesenchymal Stem Cells in Homeostasis and Systemic Diseases: Hypothesis, Evidences, and Therapeutic Opportunities vol.20, pp.15, 2018, https://doi.org/10.3390/ijms20153738
  4. In Situ Self-Cross-Linkable, Long-Term Stable Hyaluronic Acid Filler by Gallol Autoxidation for Tissue Augmentation and Wrinkle Correction vol.31, pp.23, 2019, https://doi.org/10.1021/acs.chemmater.9b02802
  5. Recent advances of injectable hydrogels for drug delivery and tissue engineering applications vol.81, pp.None, 2018, https://doi.org/10.1016/j.polymertesting.2019.106283
  6. Hydrogels as Potential Nano-, Micro- and Macro-Scale Systems for Controlled Drug Delivery vol.13, pp.1, 2018, https://doi.org/10.3390/ma13010188
  7. Synthesis and Applications of Hydrogels in Cancer Therapy vol.20, pp.None, 2018, https://doi.org/10.2174/1871521409666200120094048
  8. Engineered Dynamic Boronate Ester-Mediated Self-Healable Biocompatible G-Quadruplex Hydrogels for Sustained Release of Vitamins vol.36, pp.6, 2018, https://doi.org/10.1021/acs.langmuir.9b03837
  9. MSC-Encapsulating in Situ Cross-Linkable Gelatin Hydrogels To Promote Myocardial Repair vol.3, pp.3, 2018, https://doi.org/10.1021/acsabm.9b01215
  10. Current Intelligent Injectable Hydrogels for In Situ Articular Cartilage Regeneration vol.60, pp.2, 2018, https://doi.org/10.1080/15583724.2019.1683028
  11. Self‐healing injectable gelatin hydrogels for localized therapeutic cell delivery vol.108, pp.5, 2018, https://doi.org/10.1002/jbm.a.36886
  12. Synthesis and Evaluation of a Thermoresponsive Degradable Chitosan-Grafted PNIPAAm Hydrogel as a “Smart” Gene Delivery System vol.13, pp.11, 2018, https://doi.org/10.3390/ma13112530
  13. Natural Hydrogels Applied in Photodynamic Therapy vol.27, pp.16, 2018, https://doi.org/10.2174/0929867326666191016112828
  14. Bioactive, degradable and multi-functional three-dimensional membranous scaffolds of bioglass and alginate composites for tissue regenerative applications vol.8, pp.14, 2020, https://doi.org/10.1039/d0bm00714e
  15. Injectable Poly(ethylene glycol) Hydrogels Cross-Linked by Metal-Phenolic Complex and Albumin for Controlled Drug Release vol.5, pp.31, 2020, https://doi.org/10.1021/acsomega.0c01393
  16. Self assembly and hydrogelation of N-terminal modified tetrapeptide for sustained release and synergistic action of antibacterial drugs against methicillin resistant S. aureus vol.102, pp.None, 2018, https://doi.org/10.1016/j.bioorg.2020.104052
  17. Network Growth and Structural Characteristics of Globular Protein Hydrogels vol.53, pp.17, 2018, https://doi.org/10.1021/acs.macromol.0c00890
  18. Anti-Inflammatory Properties of Injectable Betamethasone-Loaded Tyramine-Modified Gellan Gum/Silk Fibroin Hydrogels vol.10, pp.10, 2018, https://doi.org/10.3390/biom10101456
  19. Recent progress in therapeutic drug delivery systems for treatment of traumatic CNS injuries vol.12, pp.19, 2018, https://doi.org/10.4155/fmc-2020-0178
  20. Injectability of Thermosensitive, Low-Concentrated Chitosan Colloids as Flow Phenomenon through the Capillary under High Shear Rate Conditions vol.12, pp.10, 2018, https://doi.org/10.3390/polym12102260
  21. Polysaccharide-Based In Situ Self-Healing Hydrogels for Tissue Engineering Applications vol.12, pp.10, 2018, https://doi.org/10.3390/polym12102261
  22. Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing vol.9, pp.20, 2018, https://doi.org/10.1002/adhm.202000905
  23. Effect of Iron-Oxide Nanoparticles Impregnated Bacterial Cellulose on Overall Properties of Alginate/Casein Hydrogels: Potential Injectable Biomaterial for Wound Healing Applications vol.12, pp.11, 2018, https://doi.org/10.3390/polym12112690
  24. pH and secondary structure instructed aggregation to a thixotropic hydrogel by a peptide amphiphile vol.43, pp.1, 2018, https://doi.org/10.1007/s12034-019-2027-6
  25. Red-Light Driven Photocatalytic Oxime Ligation for Bioorthogonal Hydrogel Design vol.10, pp.None, 2018, https://doi.org/10.1021/acsmacrolett.0c00767
  26. Recent Advances in Injectable Hydrogels for Controlled and Local Drug Delivery vol.10, pp.1, 2021, https://doi.org/10.1002/adhm.202001341
  27. Gelatin/dextran‐based hydrogel cross‐linked by Diels-Alder click chemistry: the swelling and potassium diclofenac releasing vol.4, pp.1, 2021, https://doi.org/10.1002/mds3.10151
  28. Spatiotemporally Resolved Heat Dissipation in 3D Patterned Magnetically Responsive Hydrogels vol.17, pp.5, 2021, https://doi.org/10.1002/smll.202004452
  29. Analysis on Efficacy of Chitosan-Based Gel on Bone Quality and Quantity vol.8, pp.None, 2021, https://doi.org/10.3389/fmats.2021.640950
  30. Injectable Hydrogels: From Laboratory to Industrialization vol.13, pp.4, 2018, https://doi.org/10.3390/polym13040650
  31. Carbon Nanotubes Transform Soft Gellan Gum Hydrogels into Hybrid Organic-Inorganic Coatings with Excellent Cell Growth Capability vol.7, pp.1, 2021, https://doi.org/10.3390/c7010018
  32. Fabrication and Characterisation of a Photo-Responsive, Injectable Nanosystem for Sustained Delivery of Macromolecules vol.22, pp.7, 2018, https://doi.org/10.3390/ijms22073359
  33. Photopolymerized Porous Hydrogels vol.22, pp.4, 2018, https://doi.org/10.1021/acs.biomac.0c01671
  34. Injectable biomaterials as minimal invasive strategy towards soft tissue regeneration-an overview vol.4, pp.2, 2018, https://doi.org/10.1088/2515-7639/abd4f3
  35. Injectable Hydrogels for Chronic Skin Wound Management: A Concise Review vol.9, pp.5, 2018, https://doi.org/10.3390/biomedicines9050527
  36. Synthetic hydrogels: Synthesis, novel trends, and applications vol.138, pp.19, 2018, https://doi.org/10.1002/app.50376
  37. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic vol.7, pp.6, 2018, https://doi.org/10.1021/acsbiomaterials.0c01408
  38. Injectable and Self-Healable pH-Responsive Gelatin-PEG/Laponite Hybrid Hydrogels as Long-Acting Implants for Local Cancer Treatment vol.3, pp.7, 2018, https://doi.org/10.1021/acsapm.1c00419
  39. The biomedical significance of multifunctional nanobiomaterials: The key components for site-specific delivery of therapeutics vol.277, pp.None, 2018, https://doi.org/10.1016/j.lfs.2021.119400
  40. Mechanotransducive Biomimetic Systems for Chondrogenic Differentiation In Vitro vol.22, pp.18, 2018, https://doi.org/10.3390/ijms22189690
  41. Functional Nanomaterials and 3D-Printable Nanocomposite Hydrogels for Enhanced Cell Proliferation and for the Reduction of Bacterial Biofilm Formation vol.13, pp.36, 2018, https://doi.org/10.1021/acsami.1c13392
  42. Assessing the mechanisms of action of natural molecules/extracts for phase-directed wound healing in hydrogel scaffolds vol.12, pp.9, 2018, https://doi.org/10.1039/d1md00100k
  43. Heat‐Confined Tumor‐Docking Reversible Thermogel Potentiates Systemic Antitumor Immune Response During Near‐Infrared Photothermal Ablation in Triple‐Negative Breast Cancer vol.10, pp.21, 2018, https://doi.org/10.1002/adhm.202100907
  44. Enhanced Neovascularization Using Injectable and rhVEGF‐Releasing Cryogel Microparticles vol.21, pp.11, 2021, https://doi.org/10.1002/mabi.202100234
  45. Novel Chitosan-Silica Hybrid Hydrogels for Cell Encapsulation and Drug Delivery vol.22, pp.22, 2018, https://doi.org/10.3390/ijms222212267
  46. Advances in Injectable In Situ-Forming Hydrogels for Intratumoral Treatment vol.13, pp.11, 2018, https://doi.org/10.3390/pharmaceutics13111953
  47. Biomedical applications of hydrogels in drug delivery system: An update vol.66, pp.None, 2018, https://doi.org/10.1016/j.jddst.2021.102914
  48. Collagen Nanoparticles in Drug Delivery Systems and Tissue Engineering vol.11, pp.23, 2018, https://doi.org/10.3390/app112311369
  49. Influence of Injection Application on the Sol-Gel Phase Transition Conditions of Polysaccharide-Based Hydrogels vol.22, pp.24, 2018, https://doi.org/10.3390/ijms222413208
  50. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications vol.13, pp.None, 2022, https://doi.org/10.1016/j.mtbio.2021.100186