Browse > Article
http://dx.doi.org/10.1186/s40824-018-0138-6

Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering  

Lee, Jin Hyun (Polymer Technology Institute, Sungkyunkwan University)
Publication Information
Biomaterials Research / v.22, no.4, 2018 , pp. 235-248 More about this Journal
Abstract
Background: Injectable hydrogels have been extensively researched for the use as scaffolds or as carriers of therapeutic agents such as drugs, cells, proteins, and bioactive molecules in the treatment of diseases and cancers and the repair and regeneration of tissues. It is because they have the injectability with minimal invasiveness and usability for irregularly shaped sites, in addition to typical advantages of conventional hydrogels such as biocompatibility, permeability to oxygen and nutrient, properties similar to the characteristics of the native extracellular matrix, and porous structure allowing therapeutic agents to be loaded. Main body: In this article, recent studies of injectable hydrogel systems applicable for therapeutic agent delivery, disease/cancer therapy, and tissue engineering have reviewed in terms of the various factors physically and chemically contributing to sol-gel transition via which gels have been formed. The various factors are as follows: several different non-covalent interactions resulting in physical crosslinking (the electrostatic interactions (e.g., the ionic and hydrogen bonds), hydrophobic interactions, ${\pi}$-interactions, and van der Waals forces), in-situ chemical reactions inducing chemical crosslinking (the Diels Alder click reactions, Michael reactions, Schiff base reactions, or enzyme-or photo-mediated reactions), and external stimuli (temperatures, pHs, lights, electric/magnetic fields, ultrasounds, or biomolecular species (e.g., enzyme)). Finally, their applications with accompanying therapeutic agents and notable properties used were reviewed as well. Conclusion: Injectable hydrogels, of which network morphology and properties could be tuned, have shown to control the load and release of therapeutic agents, consequently producing significant therapeutic efficacy. Accordingly, they are believed to be successful and promising biomaterials as scaffolds and carriers of therapeutic agents for disease and cancer therapy and tissue engineering.
Keywords
Injectable hydrogels; Therapeutic agent delivery; Crosslinking reaction; Disease and cancer therapy; Tissue repair and regeneration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hu X, Tan H, Hao L. Functional hydrogel contact lens for drug delivery in the application of oculopathy therapy. J Mech Behav Biomed Mater. 2016;64:43-52.   DOI
2 Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Langer R. Transdermal photopolymerization for minimally invasive implantation. Proc Natl Acad Sci. 1999;96(6):3104-7.   DOI
3 Heskins M, Guillet JE. Solution properties of poly(N-isopropylacrylamide). J Macromol Sci A, Chem. 1968;2(8):1441-55.   DOI
4 Bajaj G, Kim MR, Mohammed SI, Yeo Y. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors. J Control Release. 2012;158(3):386-92.   DOI
5 Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. JControlled Release. 2001;73(2):121-36.   DOI
6 Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci. 2015;125:75-84.   DOI
7 VC A. The history of tissue engineering. J Cell Mol Med. 2006;10(3):569-76.   DOI
8 Langer R, Vacanti J. Tissue engineering. Science. 1993;260(5110):920-6.   DOI
9 Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18-23.   DOI
10 Wang C, Varshney RR, Wang DA. Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv Drug Deliv Rev. 2010;62(7-8):699-710.   DOI
11 Oliva N, Conde J, Wang K, Artzi N. Designing hydrogels for on-demand therapy. Acc Chem Res. 2017;50(4):669-79.   DOI
12 Choi M, Choi JW, Kim S, Nizamoglu S, Hahn SK, Yun SH. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat Photonics. 2013;7:987.   DOI
13 Wang C, Stewart RJ, KopeCek J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature. 1999;397:417.   DOI
14 Garcia-Millan E, Koprivnik S, Otero-Espinar FJ. Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications. Int J Pharm. 2015;487(1):260-9.   DOI
15 Sun TL, Kurokawa T, Kuroda S, Ihsan AB, Akasaki T, Sato K, Haque MA, Nakajima T, Gong JP. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater. 2013;12:932.   DOI
16 Pang X, Wu J, Chu C-C, Chen X. Development of an arginine-based cationic hydrogel platform: synthesis, characterization and biomedical applications. Acta Biomater. 2014;10(7):3098-107.   DOI
17 Atzet S, Curtin S, Trinh P, Bryant S, Ratner B. Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds. Biomacromolecules. 2008;9(12):3370-7.   DOI
18 Cipriano BH, Banik SJ, Sharma R, Rumore D, Hwang W, Briber RM, Raghavan SR. Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules. 2014;47(13):4445-52.   DOI
19 Omidian H, Rocca JG, Park K. Advances in superporous hydrogels. J Control Release. 2005;102(1):3-12.   DOI
20 Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release. 2005;109(1):256-74.   DOI
21 Peppas NA, Van Blarcom DS. Hydrogel-based biosensors and sensing devices for drug delivery. J Control Release. 2016;240:142-50.   DOI
22 Ishii S, Kaneko J, Nagasaki Y. Development of a long-acting, protein-loaded, redox-active, injectable gel formed by a polyion complex for local protein therapeutics. Biomaterials. 2016;84:210-8.   DOI
23 Calvert P. Hydrogels for Soft Machines. Adv Mater. 2009;21(7):743-56.   DOI
24 Kirschner CM, Anseth KS. Hydrogels in healthcare: from static to dynamic material microenvironments. Acta Mater. 2013;61(3):931-44.   DOI
25 Baumann MD, Kang CE, Stanwick JC, Wang Y, Kim H, Lapitsky Y, Shoichet MS. An injectable drug delivery platform for sustained combination therapy. J Control Release. 2009;138(3):205-13.   DOI
26 Moreira HR, Munarin F, Gentilini R, Visai L, Granja PL, Tanzi MC, Petrini P. Injectable pectin hydrogels produced by internal gelation: pH dependence of gelling and rheological properties. Carbohydr Polym. 2014;103:339-47.   DOI
27 Yan C, Pochan DJ. Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem Soc Rev. 2010;39(9):3528-40.   DOI
28 Ren Y, Zhao X, Liang X, Ma PX, Guo B. Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson's disease. Int J Biol Macromol. 2017;105:1079-87.   DOI
29 Ruirui X, Kai L, Tifeng J, Ning Z, Kai M, Ruiyun Z, Qianli Z, Guanghui M, Xuehai Y. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor Photothermal/photodynamic therapy. Adv Mater. 2016;28(19):3669-76.   DOI
30 Zubik K, Singhsa P, Wang Y, Manuspiya H, Narain R. Thermo-responsive poly (N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers. 2017;9(4):119.   DOI
31 Loebel C, Rodell CB, Chen MH, Burdick JA. Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nat Protoc. 2017;12:1521.   DOI
32 Baral A, Roy S, Dehsorkhi A, Hamley IW, Mohapatra S, Ghosh S, Banerjee A. Assembly of an injectable noncytotoxic peptide-based Hydrogelator for sustained release of drugs. Langmuir. 2014;30(3):929-36.   DOI
33 Feng H, Du Y, Tang F, Ji N, Zhao X, Zhao H, Chen Q. Silver ions blocking crystallization of guanosine-based hydrogel for potential antimicrobial applications. RSC Adv. 2018;8(28):15842-52.   DOI
34 Cinar G, Ozdemir A, Hamsici S, Gunay G, Dana A, Tekinay AB, Guler MO. Local delivery of doxorubicin through supramolecular peptide amphiphile nanofiber gels. Biomater Sci. 2017;5(1):67-76.   DOI
35 Payyappilly S, Dhara S, Chattopadhyay S. Thermoresponsive biodegradable PEG-PCL-PEG based injectable hydrogel for pulsatile insulin delivery. J Biomed Mater Res A. 2014;102(5):1500-9.   DOI
36 Li G, Wu J, Wang B, Yan S, Zhang K, Ding J, Yin J. Self-healing supramolecular self-assembled hydrogels based on poly(l-glutamic acid). Biomacromolecules. 2015;16(11):3508-18.   DOI
37 Sim HJ, Thambi T, Lee DS. Heparin-based temperature-sensitive injectable hydrogels for protein delivery. J Mater Chem B. 2015;3(45):8892-901.   DOI
38 Pacelli S, Acosta F, Chakravarti AR, Samanta SG, Whitlow J, Modaresi S, Ahmed RPH, Rajasingh J, Paul A. Nanodiamond-based injectable hydrogel for sustained growth factor release: preparation, characterization and in vitro analysis. Acta Biomater. 2017;58:479-91.   DOI
39 Ye X, Li X, Shen Y, Chang G, Yang J, Gu Z. Self-healing pH-sensitive cytosine- and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding. Polymer. 2017;108:348-60.   DOI
40 Li X, Fu M, Wu J, Zhang C, Deng X, Dhinakar A, Huang W, Qian H, Ge L. pHsensitive peptide hydrogel for glucose-responsive insulin delivery. Acta Biomater. 2017;51:294-303.   DOI
41 Qu J, Zhao X, Ma PX, Guo B. Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized "smart" drug release. Acta Biomater. 2018;72:55-69.   DOI
42 Wu H, Song L, Chen L, Zhang W, Chen Y, Zang F, Chen H, Ma M, Gu N, Zhang Y. Injectable magnetic supramolecular hydrogel with magnetocaloric liquid-conformal property prevents the post-operative recurrence in a breast cancer model. Acta Biomater. 2018;74:302-11.   DOI
43 Turner PA, Thiele JS, Stegemann JP. Growth factor sequestration and enzyme-mediated release from genipin-crosslinked gelatin microspheres. J Biomater Sci Polym Ed. 2017;28(16):1826-46.   DOI
44 Ballios Brian G, Cooke Michael J, Donaldson L, Coles Brenda LK, Morshead Cindi M, van der Kooy D, Shoichet Molly S. A Hyaluronan-based injectable hydrogel improves the survival and integration of stem cell progeny following transplantation. Stem Cell Reports. 2015;4(6):1031-45.   DOI
45 KP M, SR A, OL P, LP J, Emanual M, KK L, KA M. Controlling the Release of Small, Bioactive Proteins via Dual Mechanisms with Therapeutic Potential. Adv Healthc Mater. 2017;6(24):1700713.   DOI
46 Wu C, Zhao J, Hu F, Zheng Y, Yang H, Pan S, Shi S, Chen X, Wang S. Design of injectable agar-based composite hydrogel for multi-mode tumor therapy. Carbohydr Polym. 2018;180:112-21.   DOI
47 Huebsch N, Kearney CJ, Zhao X, Kim J, Cezar CA, Suo Z, Mooney DJ. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc Natl Acad Sci. 2014;111(27):9762-7.   DOI
48 VJ A, Fayekah A, Nicole P, Yasemin K, Varun V, NL S, HB D, Yusuf K. Mechanically loading cell/hydrogel constructs with low-intensity pulsed ultrasound for bone repair. Tissue Eng Part A. 2018;24(3-4):254-63.   DOI
49 Wickremasinghe NC, Kumar VA, Hartgerink JD. Two-step self-assembly of liposome-multidomain peptide nanofiber hydrogel for time-controlled release. Biomacromolecules. 2014;15(10):3587-95.   DOI
50 Gregoritza M, Brandl FP. The Diels-Alder reaction: a powerful tool for the design of drug delivery systems and biomaterials. Eur J Pharm Biopharm. 2015;97:438-53.   DOI
51 KS T, DR M, Pascal J, Jianyu L, BR K, LS A, JN S, MD J. Click-crosslinked injectable gelatin hydrogels. Adv Healthc Mater. 2016;5(5):541-7.   DOI
52 Wei Z, Yang JH, Liu ZQ, Xu F, Zhou JX, Zrinyi M, Osada Y, Chen YM. Novel biocompatible polysaccharide-based self-healing hydrogel. Adv Funct Mater. 2015;25(9):1352-9.   DOI
53 Bai X, Lu S, Cao Z, Ni B, Wang X, Ning P, Ma D, Wei H, Liu M. Dual crosslinked chondroitin sulfate injectable hydrogel formed via continuous Diels-Alder (DA) click chemistry for bone repair. Carbohydr Polym. 2017;166:123-30.   DOI
54 Gregoritza M, Messmann V, Abstiens K, Brandl FP, Goepferich AM. Controlled antibody release from degradable Thermoresponsive hydrogels cross-linked by Diels-Alder chemistry. Biomacromolecules. 2017;18(8):2410-8.   DOI
55 Mather BD, Viswanathan K, Miller KM, Long TE. Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci. 2006;31(5):487-531.   DOI
56 Nair DP, Podgorski M, Chatani S, Gong T, Xi W, Fenoli CR, Bowman CN. The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater. 2014;26(1):724-44.   DOI
57 Southan A, Lang T, Schweikert M, Tovar GM, Wege C, Eiben S. Covalent incorporation of tobacco mosaic virus increases the stiffness of poly (ethylene glycol) diacrylate hydrogels. RSC Adv. 2018;8(9):4686-94.   DOI
58 Xin Y, Yuan J. Schiff's base as a stimuli-responsive linker in polymer chemistry. Polym Chem. 2012;3(11):3045-55.   DOI
59 Cao L, Cao B, Lu C, Wang G, Yu L, Ding J. An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering. J Mater Chem B. 2015;3(7):1268-80.   DOI
60 Chen H, Xing X, Tan H, Jia Y, Zhou T, Chen Y, Ling Z, Hu X. Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Mater Sci Eng C. 2017;70:287-95.   DOI
61 Aleksander S. V. MS, Kathryn C, David M, Anthony a, Shay S: a tunable hydrogel system for long-term release of cell-secreted cytokines and bioprinted in situ wound cell delivery. J Biomed Mater Res B Appl Biomater. 2017;105(7):1986-2000.   DOI
62 Wu X, He C, Wu Y, Chen X. Synergistic therapeutic effects of Schiff's base crosslinked injectable hydrogels for local co-delivery of metformin and 5- fluorouracil in a mouse colon carcinoma model. Biomaterials. 2016;75:148-62.   DOI
63 Amsden BG, Sukarto A, Knight DK, Shapka SN. Methacrylated glycol chitosan as a Photopolymerizable biomaterial. Biomacromolecules. 2007;8(12):3758-66.   DOI
64 ARU A, MP J, PWL A, GR A. Tailoring 3D hydrogel systems for neuronal encapsulation in living electrodes. J Polym Sci B Polym Phys. 2018;56(4):273-87.   DOI
65 Jin R, Hiemstra C, Zhong Z, Feijen J. Enzyme-mediated fast in situ formation of hydrogels from dextran-tyramine conjugates. Biomaterials. 2007;28(18):2791-800.   DOI
66 Gao Y, Luo Q, Qiao S, Wang L, Dong Z, Xu J, Liu J. Enzymetically regulating the self-healing of protein hydrogels with high healing efficiency. Angew Chem Int Ed. 2014;53(35):9343-6.   DOI
67 Xu K, Narayanan K, Lee F, Bae KH, Gao S, Kurisawa M. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D. Acta Biomater. 2015;24:159-71.   DOI
68 Wichterle O, LIM D. Hydrophilic gels for biological use. Nature. 1960;185(4706):117-8.   DOI
69 Paradiso P, Colaco R, MJL G, Krastev R, Saramago B, SA P. Drug release from liposome coated hydrogels for soft contact lenses: the blinking and temperature effect. J Biomed Mater Res B Appl Biomater. 2017;105(7):1799-807.   DOI