Browse > Article

In situ Gel Forming Stereocomplex Composed of Four-Arm PEG-PDLA and PEG-PLLA Block Copolymers  

Jun, Yeo-Jin (Department of Molecular Science and Technology, Ajou University)
Park, Kyung-Min (Department of Molecular Science and Technology, Ajou University)
Joung, Yoon-Ki (Department of Molecular Science and Technology, Ajou University)
Park, Ki-Dong (Department of Molecular Science and Technology, Ajou University)
Lee, Seung-Jin (Department of Pharmacy, Ewha Womans University)
Publication Information
Macromolecular Research / v.16, no.8, 2008 , pp. 704-710 More about this Journal
Abstract
Injectable hydrogels are quite promising materials due to their potential to minimize invasive implantation and this provides versatile fitness irrespective of the damaged regions and facilitates the incorporation of bioactive agents or cells. In situ gel formation through stereocomplex formation is a promising candidate for injectable hydrogels. In this paper, a new series of enantiomeric, four-arm, PEG-PLA block copolymers and their stereocomplexed hydrogels were prepared by bulk ring-opening polymerization of D-lactide and L-lactide, respectively, with stannous octoate as a catalyst. The prepared polymers were characterized by $^1H$ nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT IR) spectroscopy, gel permeation chromatography (GPC) and thermal gravitational analysis (TGA), confirming the tailored structure and chain lengths. The swelling and degradation behavior of the hydrogels formed from a selected copolymer series were observed in different concentrations. The degradation rate decreased with increasing polymer content in the solution. The rheological behavior indicated that the prepared hydrogel underwent in situ gelation and had favorable mechanical strength. In addition, its feasibility as an injectable scaffold was evaluated using a media dependence test for cell culture. A Tris solution was more favorable for in situ gel formation than PBS and DMEM solutions were. These results demonstrated the in situ formation of hydrogel through the construction of a stereocomplex with enantiomeric, 4-arm, PEG-PLA copolymers. Overall, enantiomeric, 4-arm, PEG-PLA copolymers are a new species of stereocomplexed hydrogels that are suitable for further research into injectable hydrogels.
Keywords
injectable hydrogel; in situ hydrogelation; stereocomplex formation; 4-arm PEG-PLA enantiomers;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
Times Cited By Web Of Science : 12  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 J. W. Bae, D. H. Go, S. J. Lee, and K. D. Park, Macromol. Res., 14, 461 (2006)   과학기술학회마을   DOI
2 S. Kim and K. E. Healy, Biomacromolecules, 4, 1214 (2003)   DOI   ScienceOn
3 T. Vermonden, N. E. Fedorovich, D. van Geemen, J. Alblas, C. F. van Nostrum, W. J. A. Dhert, and W. E. Hennink, Biomacromolecules, 9, 919 (2008)   DOI   ScienceOn
4 H. F. Liang, M. H. Hong, R. M. Ho, C. K. Chung, Y. H. Lin, C. H. Chen, and H. W. Sung, Biomacromolecules, 5, 1917 (2004)   DOI   ScienceOn
5 D. Wang, K. Dusek, P. Kopeckova, M. Duskova-Smrckova, and J. Kopecek, Macromolecules, 35, 7791 (2002)   DOI   ScienceOn
6 N. M. Shah, M. D. Pool, and A. T. Metters, Biomacromolecules, 7, 3171 (2006)   DOI   ScienceOn
7 C. Hiemstra, L. J. van der Aa, Z. Zhong, P. J. Dijkstra, and J. Feijen, Macromolecules, 40, 1165 (2007)   DOI   ScienceOn
8 H. Tsuji, Macromol. Biosci., 5, 569 (2005)   DOI   ScienceOn
9 S. Li, Macromol. Biosci., 3, 657 (2003)   DOI   ScienceOn
10 H. Park, K. Y. Lee, and S. J. Lee, Macromol. Res., 15, 238 (2007)   과학기술학회마을   DOI
11 K. Nagahama, Y. Nishimura, Y. Ohya, and T. Ouchi, Polymer, 48, 2649 (2007)   DOI   ScienceOn
12 S. J. de Jong, S. C. De Smedt, M. W. C. Wahls, J. Demeester, J. J. Kettenes-van den Bosch, and W. E. Hennink, Macromolecules, 33, 3680 (2000)   DOI   ScienceOn
13 C. Hiemstra, Z. Zhong, S. R. Van Tomme, M. J. van Steenbergen, J. J. L. Jacobs, W. D. Otter, W. E. Hennink, and J. Feijen, J. Control. Release, 119, 320 (2007)   DOI   ScienceOn
14 D. Karst and Y. Yang, Polymer, 47, 4845 (2006)   DOI   ScienceOn
15 J. B. Kim, J. H. Chun, D. H. Kim, Y. H. Choi, and M. S. Lee, Macromol. Res., 10, 230 (2002)   DOI
16 R. A. Stile, W. R. Burghardt, and K. E. Healy, Macromolecules, 32, 7370 (1999)   DOI   ScienceOn
17 X. He and E. Jabbari, Biomacromolecules, 8, 780 (2007)   DOI   ScienceOn
18 S. Toledano, R. J. Williams, V. Jayawarna, and R. V. Ulijn, J. Am. Chem. Soc., 128, 1070 (2006)   DOI   ScienceOn
19 C. Hiemstra, Z. Zhong, P. J. Dijkstra, and J. Feijen, Macromol. Symp., 224, 119 (2005)
20 S. Li, A. E. Ghzaoui, and E. Dewinck, Macromol. Symp., 222, 23 (2005)
21 E. Ho, A. Lowman, and M. Marcolongo, Biomacromolecules, 7, 3223 (2006)   DOI   ScienceOn
22 S. J. Im, Y. M. Choi, and E. Subramanyam, Macromol. Res., 15, 363 (2007)   과학기술학회마을   DOI
23 J. H. de Groot, F. van Beijma, H. J. Haitjema, K. A. Dillingham, K. A. Hodd, S. A. Koopmans, and S. Norrby, Biomacromolecules, 2, 628 (2001)   DOI   ScienceOn
24 H. Yu and D. W. Grainger, Macromolecules, 27, 4554 (1994)   DOI   ScienceOn
25 M. Tortora, F. Cavalieri, E. Chiessi, and G. Paradossi, Biomacromolecules, 8, 209 (2007)   DOI   ScienceOn
26 M. Torres-Lugo and N. A. Peppas, Macromolecules, 32, 6646 (1999)   DOI   ScienceOn
27 M. Dadsetan, J. P. Szatkowski, M. J. Yaszemski, and L. Lu, Biomacromolecules, 8, 1702 (2007)   DOI   ScienceOn
28 M. J. Park, K. Char, H. D. Kim, C. H. Lee, B. S. Seong, and Y. S. Han, Macromol. Res., 10, 325 (2002)   DOI   ScienceOn
29 Y. K. Joung, J. S. Lee, S. J. Lee, and K. D. Park, Macromol. Res., 16, 66 (2008)   과학기술학회마을   DOI
30 Z. Yang, G. Liang, and B. Xu, Acc. Chem. Res., 41, 315 (2008)   DOI   ScienceOn
31 B. Jeong, Y. H. Bae, D. S. Lee, and S. W. Kim, Nature, 388, 860 (1997)   DOI   ScienceOn
32 S. Y. Park, D. K. Han, and S. C. Kim, Macromolecules, 34, 8821 (2001)   DOI   ScienceOn
33 W. S. Shim, J. S. Yoo, Y. H. Bae, and D. S. Lee, Biomacromolecules, 6, 2930 (2005)   DOI   ScienceOn
34 J. B. Leach, K. A. Bivens, C. W. Patrick, Jr., and C. E. Schmidt, Biotech. Bioeng., 82, 578 (2003)   DOI   ScienceOn
35 M. P. Lutolf and J. A. Hubbell, Biomacromolecules, 4, 713 (2003)   DOI   ScienceOn
36 A. S. Sarvestani, X. He, and E. Jabbari, Biomacromolecules, 8, 406 (2007)   DOI   ScienceOn
37 J. Slager and A. J. Domb, Adv. Drug Deliver. Rev., 55, 549 (2003)   DOI   ScienceOn
38 L. Li, S. Ding, and C. Zhou, J. Appl. Polym. Sci., 91, 274 (2004)   DOI   ScienceOn
39 S. J. de Jong, W. N. E. van Dijk-Wolthuis, J. J. Kettenes-van den Bosch, P. J. W. Schuyl, and W. E. Hennink, Macromolecules, 31, 6397 (1998)   DOI   ScienceOn
40 D. I. Ha, S. B. Lee, and M. S. Chong, Macromol. Res., 14, 87 (2006)   과학기술학회마을   DOI
41 M. S. Bae, K. Y. Lee, Y. J. Park, and D. J. Mooney, Macromol. Res., 15, 469 (2007)   과학기술학회마을   DOI
42 C. Hiemstra, Z. Zhong, L. Li, P. J. Dijkstra, and J. Feijen, Biomacromolecules, 7, 2790 (2006)   DOI   ScienceOn
43 K. M. Gattas-Asfura, E. Weisman, F. M. Andreopoulos, M. Micic, B. Muller, S. Sirpal, S. M. Pham, and R. M. Leblanc, Biomacromolecules, 6, 1503 (2005)   DOI   ScienceOn
44 A. Bishara, H. R. Kricheldorf, and A. J. Domb, Macromol. Symp., 225, 17 (2005)
45 J. Lei, J. H. Ki, and Y. S. Jeon, Macromol. Res., 16, 45 (2008)   과학기술학회마을   DOI
46 K. D. Park, H. D. Park, H. J. Lee, Y. H. Kim, T. Ooya, and N. Yui, Macromol. Res., 12, 342 (2004)   DOI   ScienceOn
47 Y. K. Son, J. H. Kim, and Y. S. Jeon, Macromol. Res., 15, 527 (2007)   과학기술학회마을   DOI
48 S. J. de Jong, C. F. van Nostrum, L. M. J. Kroon-Batenburg, J. J. Kettenes-van den Bosch, and W. E. Hennink, J. Appl. Polym. Sci., 86, 289 (2002)   DOI   ScienceOn