In situ Gel Forming Stereocomplex Composed of Four-Arm PEG-PDLA and PEG-PLLA Block Copolymers

  • Jun, Yeo-Jin (Department of Molecular Science and Technology, Ajou University) ;
  • Park, Kyung-Min (Department of Molecular Science and Technology, Ajou University) ;
  • Joung, Yoon-Ki (Department of Molecular Science and Technology, Ajou University) ;
  • Park, Ki-Dong (Department of Molecular Science and Technology, Ajou University) ;
  • Lee, Seung-Jin (Department of Pharmacy, Ewha Womans University)
  • Published : 2008.12.31

Abstract

Injectable hydrogels are quite promising materials due to their potential to minimize invasive implantation and this provides versatile fitness irrespective of the damaged regions and facilitates the incorporation of bioactive agents or cells. In situ gel formation through stereocomplex formation is a promising candidate for injectable hydrogels. In this paper, a new series of enantiomeric, four-arm, PEG-PLA block copolymers and their stereocomplexed hydrogels were prepared by bulk ring-opening polymerization of D-lactide and L-lactide, respectively, with stannous octoate as a catalyst. The prepared polymers were characterized by $^1H$ nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT IR) spectroscopy, gel permeation chromatography (GPC) and thermal gravitational analysis (TGA), confirming the tailored structure and chain lengths. The swelling and degradation behavior of the hydrogels formed from a selected copolymer series were observed in different concentrations. The degradation rate decreased with increasing polymer content in the solution. The rheological behavior indicated that the prepared hydrogel underwent in situ gelation and had favorable mechanical strength. In addition, its feasibility as an injectable scaffold was evaluated using a media dependence test for cell culture. A Tris solution was more favorable for in situ gel formation than PBS and DMEM solutions were. These results demonstrated the in situ formation of hydrogel through the construction of a stereocomplex with enantiomeric, 4-arm, PEG-PLA copolymers. Overall, enantiomeric, 4-arm, PEG-PLA copolymers are a new species of stereocomplexed hydrogels that are suitable for further research into injectable hydrogels.

Keywords

References

  1. S. Y. Park, D. K. Han, and S. C. Kim, Macromolecules, 34, 8821 (2001) https://doi.org/10.1021/ma010789d
  2. M. J. Park, K. Char, H. D. Kim, C. H. Lee, B. S. Seong, and Y. S. Han, Macromol. Res., 10, 325 (2002) https://doi.org/10.1007/BF03218326
  3. J. W. Bae, D. H. Go, S. J. Lee, and K. D. Park, Macromol. Res., 14, 461 (2006) https://doi.org/10.1007/BF03219111
  4. K. D. Park, H. D. Park, H. J. Lee, Y. H. Kim, T. Ooya, and N. Yui, Macromol. Res., 12, 342 (2004) https://doi.org/10.1007/BF03218410
  5. J. B. Kim, J. H. Chun, D. H. Kim, Y. H. Choi, and M. S. Lee, Macromol. Res., 10, 230 (2002) https://doi.org/10.1007/BF03218310
  6. S. J. Im, Y. M. Choi, and E. Subramanyam, Macromol. Res., 15, 363 (2007) https://doi.org/10.1007/BF03218800
  7. B. Jeong, Y. H. Bae, D. S. Lee, and S. W. Kim, Nature, 388, 860 (1997) https://doi.org/10.1038/42218
  8. M. S. Bae, K. Y. Lee, Y. J. Park, and D. J. Mooney, Macromol. Res., 15, 469 (2007) https://doi.org/10.1007/BF03218816
  9. R. A. Stile, W. R. Burghardt, and K. E. Healy, Macromolecules, 32, 7370 (1999) https://doi.org/10.1021/ma990130w
  10. S. Kim and K. E. Healy, Biomacromolecules, 4, 1214 (2003) https://doi.org/10.1021/bm0340467
  11. X. He and E. Jabbari, Biomacromolecules, 8, 780 (2007) https://doi.org/10.1021/bm060671a
  12. J. H. de Groot, F. van Beijma, H. J. Haitjema, K. A. Dillingham, K. A. Hodd, S. A. Koopmans, and S. Norrby, Biomacromolecules, 2, 628 (2001) https://doi.org/10.1021/bm005622r
  13. W. S. Shim, J. S. Yoo, Y. H. Bae, and D. S. Lee, Biomacromolecules, 6, 2930 (2005) https://doi.org/10.1021/bm050521k
  14. A. S. Sarvestani, X. He, and E. Jabbari, Biomacromolecules, 8, 406 (2007) https://doi.org/10.1021/bm060648p
  15. E. Ho, A. Lowman, and M. Marcolongo, Biomacromolecules, 7, 3223 (2006) https://doi.org/10.1021/bm0602536
  16. H. Yu and D. W. Grainger, Macromolecules, 27, 4554 (1994) https://doi.org/10.1021/ma00094a019
  17. T. Vermonden, N. E. Fedorovich, D. van Geemen, J. Alblas, C. F. van Nostrum, W. J. A. Dhert, and W. E. Hennink, Biomacromolecules, 9, 919 (2008) https://doi.org/10.1021/bm7013075
  18. D. I. Ha, S. B. Lee, and M. S. Chong, Macromol. Res., 14, 87 (2006) https://doi.org/10.1007/BF03219073
  19. Y. K. Joung, J. S. Lee, S. J. Lee, and K. D. Park, Macromol. Res., 16, 66 (2008) https://doi.org/10.1007/BF03218963
  20. M. Torres-Lugo and N. A. Peppas, Macromolecules, 32, 6646 (1999) https://doi.org/10.1021/ma990541c
  21. H. F. Liang, M. H. Hong, R. M. Ho, C. K. Chung, Y. H. Lin, C. H. Chen, and H. W. Sung, Biomacromolecules, 5, 1917 (2004) https://doi.org/10.1021/bm049813w
  22. D. Wang, K. Dusek, P. Kopeckova, M. Duskova-Smrckova, and J. Kopecek, Macromolecules, 35, 7791 (2002) https://doi.org/10.1021/ma020745k
  23. M. Dadsetan, J. P. Szatkowski, M. J. Yaszemski, and L. Lu, Biomacromolecules, 8, 1702 (2007) https://doi.org/10.1021/bm070052h
  24. K. M. Gattas-Asfura, E. Weisman, F. M. Andreopoulos, M. Micic, B. Muller, S. Sirpal, S. M. Pham, and R. M. Leblanc, Biomacromolecules, 6, 1503 (2005) https://doi.org/10.1021/bm049238w
  25. N. M. Shah, M. D. Pool, and A. T. Metters, Biomacromolecules, 7, 3171 (2006) https://doi.org/10.1021/bm060339z
  26. J. B. Leach, K. A. Bivens, C. W. Patrick, Jr., and C. E. Schmidt, Biotech. Bioeng., 82, 578 (2003) https://doi.org/10.1002/bit.10605
  27. C. Hiemstra, L. J. van der Aa, Z. Zhong, P. J. Dijkstra, and J. Feijen, Macromolecules, 40, 1165 (2007) https://doi.org/10.1021/ma062468d
  28. M. P. Lutolf and J. A. Hubbell, Biomacromolecules, 4, 713 (2003) https://doi.org/10.1021/bm025744e
  29. M. Tortora, F. Cavalieri, E. Chiessi, and G. Paradossi, Biomacromolecules, 8, 209 (2007) https://doi.org/10.1021/bm0607269
  30. Z. Yang, G. Liang, and B. Xu, Acc. Chem. Res., 41, 315 (2008) https://doi.org/10.1021/ar7001914
  31. S. Toledano, R. J. Williams, V. Jayawarna, and R. V. Ulijn, J. Am. Chem. Soc., 128, 1070 (2006) https://doi.org/10.1021/ja056549l
  32. H. Tsuji, Macromol. Biosci., 5, 569 (2005) https://doi.org/10.1002/mabi.200500062
  33. A. Bishara, H. R. Kricheldorf, and A. J. Domb, Macromol. Symp., 225, 17 (2005)
  34. S. Li, Macromol. Biosci., 3, 657 (2003) https://doi.org/10.1002/mabi.200350032
  35. S. Li, A. E. Ghzaoui, and E. Dewinck, Macromol. Symp., 222, 23 (2005)
  36. H. Park, K. Y. Lee, and S. J. Lee, Macromol. Res., 15, 238 (2007) https://doi.org/10.1007/BF03218782
  37. Y. K. Son, J. H. Kim, and Y. S. Jeon, Macromol. Res., 15, 527 (2007) https://doi.org/10.1007/BF03218826
  38. C. Hiemstra, Z. Zhong, L. Li, P. J. Dijkstra, and J. Feijen, Biomacromolecules, 7, 2790 (2006) https://doi.org/10.1021/bm060630e
  39. C. Hiemstra, Z. Zhong, P. J. Dijkstra, and J. Feijen, Macromol. Symp., 224, 119 (2005)
  40. K. Nagahama, Y. Nishimura, Y. Ohya, and T. Ouchi, Polymer, 48, 2649 (2007) https://doi.org/10.1016/j.polymer.2007.03.017
  41. S. J. de Jong, C. F. van Nostrum, L. M. J. Kroon-Batenburg, J. J. Kettenes-van den Bosch, and W. E. Hennink, J. Appl. Polym. Sci., 86, 289 (2002) https://doi.org/10.1002/app.10954
  42. S. J. de Jong, S. C. De Smedt, M. W. C. Wahls, J. Demeester, J. J. Kettenes-van den Bosch, and W. E. Hennink, Macromolecules, 33, 3680 (2000) https://doi.org/10.1021/ma992067g
  43. S. J. de Jong, W. N. E. van Dijk-Wolthuis, J. J. Kettenes-van den Bosch, P. J. W. Schuyl, and W. E. Hennink, Macromolecules, 31, 6397 (1998) https://doi.org/10.1021/ma980553i
  44. C. Hiemstra, Z. Zhong, S. R. Van Tomme, M. J. van Steenbergen, J. J. L. Jacobs, W. D. Otter, W. E. Hennink, and J. Feijen, J. Control. Release, 119, 320 (2007) https://doi.org/10.1016/j.jconrel.2007.03.014
  45. J. Lei, J. H. Ki, and Y. S. Jeon, Macromol. Res., 16, 45 (2008) https://doi.org/10.1007/BF03218959
  46. J. Slager and A. J. Domb, Adv. Drug Deliver. Rev., 55, 549 (2003) https://doi.org/10.1016/S0169-409X(03)00042-5
  47. D. Karst and Y. Yang, Polymer, 47, 4845 (2006) https://doi.org/10.1016/j.polymer.2006.05.002
  48. L. Li, S. Ding, and C. Zhou, J. Appl. Polym. Sci., 91, 274 (2004) https://doi.org/10.1002/app.12954