• 제목/요약/키워드: infinite dimensional algebra

검색결과 24건 처리시간 0.016초

2-LOCAL DERIVATIONS ON C*-ALGEBRAS

  • Wenbo Huang;Jiankui Li
    • 대한수학회보
    • /
    • 제61권3호
    • /
    • pp.813-823
    • /
    • 2024
  • In this paper, we prove that every 2-local derivation on several classes of C*-algebras, such as unital properly infinite, type I or residually finite-dimensional C*-algebras, is a derivation. We show that the following statements are equivalent: (1) every 2-local derivation on a C*-algebra is a derivation, (2) every 2-local derivation on a unital primitive antiliminal and no properly infinite C*-algebra is a derivation. We also show that every 2-local derivation on a group C*-algebra C*(𝔽) or a unital simple infinite-dimensional quasidiagonal C*-algebra, which is stable finite antiliminal C*-algebra, is a derivation.

ON A DECOMPOSITION OF MINIMAL COISOMETRIC EXTENSIONS

  • Park, Kun-Wook
    • 대한수학회논문집
    • /
    • 제9권4호
    • /
    • pp.847-852
    • /
    • 1994
  • Let $H$ be a separable, infinite dimensional, complex Hilbert space and let $L(H)$ be the algebra of all bounded linear operator on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $I_H$ and is closed in the ultraweak operator topology on $L(H)$.

  • PDF

A LINEAR APPROACH TO LIE TRIPLE AUTOMORPHISMS OF H*-ALGEBRAS

  • Martin, A. J. Calderon;Gonzalez, C. Martin
    • 대한수학회지
    • /
    • 제48권1호
    • /
    • pp.117-132
    • /
    • 2011
  • By developing a linear algebra program involving many different structures associated to a three-graded H*-algebra, it is shown that if L is a Lie triple automorphism of an infinite-dimensional topologically simple associative H*-algebra A, then L is either an automorphism, an anti-automorphism, the negative of an automorphism or the negative of an anti-automorphism. If A is finite-dimensional, then there exists an automorphism, an anti-automorphism, the negative of an automorphism or the negative of an anti-automorphism F : A $\rightarrow$ A such that $\delta$:= F - L is a linear map from A onto its center sending commutators to zero. We also describe L in the case of having A zero annihilator.

CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH INFINITE DIMENSIONAL CONDITIONING FUNCTION

  • Jae Gil Choi;Sang Kil Shim
    • 대한수학회보
    • /
    • 제60권5호
    • /
    • pp.1221-1235
    • /
    • 2023
  • In this paper, we use an infinite dimensional conditioning function to define a conditional Fourier-Feynman transform (CFFT) and a conditional convolution product (CCP) on the Wiener space. We establish the existences of the CFFT and the CCP for bounded functions which form a Banach algebra. We then provide fundamental relationships between the CFFTs and the CCPs.

A geometric criterion for the element of the class $A_{1,aleph_0 $(r)

  • Kim, Hae-Gyu;Yang, Young-Oh
    • 대한수학회지
    • /
    • 제32권3호
    • /
    • pp.635-647
    • /
    • 1995
  • Let $H$ denote a separable, infinite dimensional complex Hilbert space and let $L(H)$ denote the algebra of all bounded linear operators on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $1_H$ and is closed in the $weak^*$ operator topology on $L(H)$. For $T \in L(H)$, let $A_T$ denote the smallest subalgebra of $L(H)$ that contains T and $1_H$ and is closed in the $weak^*$ operator topology.

  • PDF

Separating sets and systems of simultaneous equations in the predual of an operator algebra

  • Jung, Il-Bong;Lee, Mi-Young;Lee, Sang-Hun
    • 대한수학회지
    • /
    • 제32권2호
    • /
    • pp.311-319
    • /
    • 1995
  • Let $H$ be a separable, infinite dimensional, complex Hilbert space and let $L(H)$ be the algebra of all bounded linear operaors on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $I_H$ and is closed in the $weak^*$ topology on $L(H)$. Note that the ultraweak operator topology coincides with the $weak^*$ topology on $L(H)$ (see [5]).

  • PDF

A NOTE ON THE COMPLEXIFICATION OF CONFORMAL GROUP II*

  • Lee, Ke-Seung
    • 충청수학회지
    • /
    • 제8권1호
    • /
    • pp.137-145
    • /
    • 1995
  • In the white noise analysis the one-parameter groups play the powerful role. In this report, we will see a subgroup of infinite dimensional unitary group $U_{\infty}$ including guage transform and structure of this subgroup under the view point of Lie algebra.

  • PDF