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2-LOCAL DERIVATIONS ON C∗-ALGEBRAS

Wenbo Huang and Jiankui Li

Abstract. In this paper, we prove that every 2-local derivation on sev-

eral classes of C∗-algebras, such as unital properly infinite, type I or

residually finite-dimensional C∗-algebras, is a derivation. We show that
the following statements are equivalent: (1) every 2-local derivation on a

C∗-algebra is a derivation, (2) every 2-local derivation on a unital prim-
itive antiliminal and no properly infinite C∗-algebra is a derivation. We

also show that every 2-local derivation on a group C∗-algebra C∗(F) or

a unital simple infinite-dimensional quasidiagonal C∗-algebra, which is
stable finite antiliminal C∗-algebra, is a derivation.

1. Introduction

Throughout this paper, A is an algebra over the complex field C. By an
ideal we always mean a two-sided ideal unless otherwise specified. Recall that
A is prime if for each a, b ∈ A the identity aAb = 0 implies that a = 0 or b = 0.
A is said to be semiprime if for each a in A, aAa = 0 implies a = 0. Obviously,
every C∗-algebra is semiprime.

A linear mapping D on A is called a Jordan derivation if D(a2) = D(a)a+
aD(a) for each a in A. In particular, if D(ab) = D(a)b+ aD(b) for each a, b in
A, then D is called a derivation. A classical result of Herstein [13] asserts that
every Jordan derivation on a 2-torsion free prime ring is a derivation. Cusack
[8] generalizes the above result to 2-torsion free semiprime rings.

The Gleason-Kahane-Żelazko theorem, a fundamental contribution in the
theory of Banach algebras, in modern terminology, asserts that every unital
local homomorphism from a Banach algebra A into C is a homomorphism.
Kadison [17] and Larson and Sourour [21] independently introduce the con-
cept of local homomorphisms or local derivations. A classical result of John-
son [16] shows that every local derivation from a C∗-algebra A into a Banach

A-bimodule is a derivation. After the Gleason-Kahane-Żelazko theorem was
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established, Kowalski and Slodkowski [20] showed that at the cost of requiring
the local behavior at two points, the condition of linearity can be dropped, that
is, suppose that A is a unital Banach algebra and if ϕ : A → C is a mapping
(no linearity is assumed) having the property that ϕ(1A) = 1 and for every
a, b ∈ A, there exists a homomorphism ϕa,b : A → C such that ϕa,b(a) = ϕ(a)
and ϕa,b(b) = ϕ(b), then ϕ is a homomorphism (cf. [19, 25]).

Motivated by the above ideas, Šemrl [25] introduces the concepts of 2-local
homomorphisms and 2-local derivations. Recall that a mapping ∆ : A → A
(not necessarily linear) is called a 2-local derivation if, for every a, b ∈ A, there
exists a derivation Da,b : A → A such that Da,b(a) = ∆(a) and Da,b(b) = ∆(b).

In [25], Šemrl shows that every 2-local derivation on B(H) is a derivation
for an infinite-dimensional separable Hilbert space H, and states the same
result is true when H is finite-dimensional by a long proof involving tedious
computations. Kim and Kim [18] give a short proof of the fact that every 2-
local derivation on a finite-dimensional complex matrix algebra is a derivation.
Ayupov and Kudaybergenov [2] extend this result to an arbitrary von Neumann
algebra. Zhang and Li [26] construct an example of a 2-local derivation which is
not a derivation on the algebra of all upper triangular complex 2× 2 matrices.
Let M be a commutative von Neumann algebra and S(M) be the algebra
of all measurable operators affiliated with M. Ayupov, Kudaybergenov and
Alauadinov [3] prove that S(M) admits a 2-local derivation which is not a
derivation if and only if the lattice P (M) of projections in M is not atomic.
For more information about this topic, we refer to [3, 4, 14,15,18,25].

In 2016, Ayupov, Kudaybergenov and Peralta [4] presented an open problem:
is every 2-local derivation on a C∗-algebra a derivation? At the present time,
there are few results in this topic. Kim and Kim [19] show that every continuous
2-local derivation on a unital approximately finite-dimensional (AF) C∗-algebra
is a derivation. He et al. [12] show that every 2-local derivation on Mn(A) (n >
2) is a derivation, where A is a unital Banach algebra. In the same paper,
the authors also show that every 2-local derivation on a uniformly hyperfinite
(UHF) C∗-algebra is a derivation. However, there is no known example of a
C∗-algebra that admits a 2-local derivation which is not a derivation.

The aim of the paper is to devote the above topic, to be precise, we shall
prove the following main results:

1. Every 2-local derivation on a unital properly infinite C∗-algebra is a
derivation.

2. Every 2-local derivation on a type I C∗-algebra is a derivation.

3. The following statements are equivalent:

(1) every 2-local derivation on a C∗-algebra is a derivation,

(2) every 2-local derivation on a unital primitive antiliminal and no properly
infinite C∗-algebra is a derivation.
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4. Every 2-local derivation on a group C∗-algebra C∗(F) or a unital simple
infinite-dimensional quasidiagonal C∗-algebra, which is stable finite antiliminal
C∗-algebra, is a derivation.

2. Preliminaries

2.1. 2-local derivations and their properties

Lemma 2.1. Let I be an ideal of an algebra A and ∆ : A → A be a 2-local
derivation. If D(I) ⊂ I for every derivation D on A, then ∆(I) ⊂ I.

Proof. By assumption, ∆(a) = Da,a(a) ∈ I for each a ∈ I. □

Let I be a closed ideal of a C∗-algebra A. For every derivation D on A, it
is well known that D(I) ⊂ I, so ∆(I) ⊂ I for every 2-local derivation on A.

Let I0 be a nonzero ideal of A. Suppose thatD(I0) ⊂ I0 for every derivation
D on A. Denote by a 7→ ⟨a⟩ the canonical map of A onto A/I0. Let ∆ : A → A
be a 2-local derivation. By Lemma 2.1, then ∆(I0) ⊂ I0. In this case, setting

(1) ∆0(⟨a⟩) = ⟨∆(a)⟩, ⟨a⟩ ∈ A/I0.
If ⟨a⟩ = ⟨b⟩, then a − b ∈ I0, by definition of 2-local derivations, there is
a derivation Da,b : A → A such that Da,b(a) = ∆(a) and Da,b(b) = ∆(b),
then ∆(a) − ∆(b) = Da,b(a) − Da,b(b) = Da,b(a − b) ∈ I0, this means that
⟨∆(a)⟩ = ⟨∆(b)⟩. Thus ∆0 is well-defined. In particular, if ∆ is a derivation
on A, it is straightforward to verify that ∆0 is a derivation on A/I0.

Lemma 2.2. Let I0 be a nonzero ideal of A and ∆ : A → A be a 2-local
derivation. If D(I0) ⊂ I0 for every derivation D on A, then ∆0 : A/I0 →
A/I0 is a 2-local derivation.

Proof. For any ⟨x⟩, ⟨y⟩ ∈ A/I0, fix elements a ∈ ⟨x⟩ and b ∈ ⟨y⟩, respectively.
Since ∆ : A → A is a 2-local derivation, there exists a derivation D : A →
A, depending on a and b, such that D(a) = ∆(a) and D(b) = ∆(b). By
Eq. (1), D determines a derivation D0 : A/I0 → A/I0. It is easy to verify
that ∆0(⟨x⟩) = D0(⟨x⟩) and ∆0(⟨y⟩) = D0(⟨y⟩). Thus ∆0 : A/I0 → A/I0 is a
2-local derivation. The proof is complete. □

Theorem 2.3. Let ∆ : A → A be a 2-local derivation. Suppose that there is a
family of nonzero ideals {Iλ : λ ∈ Λ} in A satisfying the following conditions:

(a)
⋂

λ∈Λ

Iλ = {0},

(b) D(Iλ) ⊆ Iλ, λ ∈ Λ, for every derivation D on A,
(c) every 2-local derivation ∆λ : A/Iλ → A/Iλ, λ ∈ Λ, is a derivation.

Then ∆ : A → A is a Jordan derivation. Moreover, if A is semiprime, then ∆
is a derivation.

Proof. If ∆ : A → A is a 2-local derivation, it easily follows that ∆ is homoge-
nous and ∆(a2) = ∆(a)a + a∆(a) for every a ∈ A. This implies that every
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additive 2-local derivation is a Jordan derivation. Thus to prove ∆ is a Jordan
derivation, it suffices to show that ∆ is additive.

Let a, b ∈ A for each λ ∈ Λ, by condition (c), ∆λ : A/Iλ → A/Iλ is a
derivation, we have

⟨0⟩λ = ∆λ(⟨a⟩λ + ⟨b⟩λ)−∆λ(⟨a⟩λ)−∆λ(⟨b⟩λ)
= ∆λ(⟨a+ b⟩λ)−∆λ(⟨a⟩λ)−∆λ(⟨b⟩λ)
= ⟨∆(a+ b)⟩λ − ⟨∆(a)⟩λ − ⟨∆(b)⟩λ
= ⟨∆(a+ b)−∆(a)−∆(b)⟩λ.

Thus ∆(a+b)−∆(a)−∆(b) ∈ Iλ for each λ ∈ Λ. Using condition (a), we have
∆(a+b)−∆(a)−∆(b) ∈

⋂
Iλ = {0}. This implies that ∆(a+b) = ∆(a)+∆(b).

Therefore ∆ is a Jordan derivation. In particular, if A is semiprime, it follows
from [8, Corollary 5] that ∆ is a derivation. The proof is complete. □

2.2. C∗-algebras

We denote by ∼ the usual Murray-von Neumann equivalence relation on the
set of projections in a C∗-algebra. A nonzero projection p is finite if p ∼ q ≤
p implies that q = p, p is properly infinite if there are mutually orthogonal
subprojections p1, p2 of p such that p1 ∼ p ∼ p2. A unital C∗-algebra A is
finite (properly infinite) if 1A is finite (properly infinite). The Calkin algebra
and every Cuntz algebra are properly infinite.

A unital C∗-algebra A is stably finite if Mn(A) is finite for all n. If A is

nonunital, it is called stably finite if its unitization Ã is stably finite. Obviously,
every C∗-algebra with a separating family of tracial states is stably finite. Every
AF algebra is stably finite.

A C∗-algebra A is residually finite-dimensional (RFD) if it has a separating
family of finite-dimensional representations. Every RFD C∗-algebra is stably
finite.

Let H be a Hilbert space and B(H) be the algebra of all bound linear op-
erators of H. Denote by K(H) the set of all compact operators in B(H). A
representation π : A → B(H) is said to be irreducible if π(A) has no nontrivial
invariant subspace. A C∗-algebra is called primitive if it has a faithful irre-
ducible representation. It is easy to verify that every primitive C∗-algebra is
prime, and for separable algebras the converse is also true (cf. [22]).

A C∗-algebra A is quasidiagonal (QD) if there exists a faithful representation
π : A → B(H) such that π(A) is a quasidiagonal C∗-algebra of operators. AF
algebras, irrational rotation algebras and RFD C∗-algebras are QD. Every QD
C∗-algebra is stably finite. For more information about this topic, we refer to
[6].

Suppose that a C∗-algebra A has a minimal left ideal J , or equivalently,
there is a minimal projection p ∈ A such that J = Ap. Then the sum of all
minimal left ideals is called the socle of A, which we denote by soc(A). If A
does not has minimal left ideal, we define soc(A) = 0. It is well known that
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soc(A) is an ideal of A. For example, the socle of B(H) is the ideal of all finite
rank operators (cf. [1, 9]).

A C∗-algebra A is called exact if A has the property that minimal tensor
product with A is an exact functor. Every nuclear C∗-algebra is exact, but the
converse is in general not true.

Recall that a C∗-algebra A is said to be type I if π(A) ∩ K(Hπ) ̸= {0} for
every irreducible representation π of A. This implies that soc(π(A)) ̸= 0 for
every irreducible representation π of A. A type I C∗-algebra needs not be
finite, the Toeplitz algebra is a counterexample. Any type I C∗-algebra cannot
be properly infinite. Every type I C∗-algebra is nuclear.

Recall that a C∗-algebra A is said to be antiliminal if no nonzero positive
element in A generates an abelian hereditary C∗-subalgebra. Equivalently, the
largest postliminal ideal in A is zero. It is well known that the Calkin algebra
is antiliminal.

For more general information we refer to [5, 11,24].

2.3. Antiliminal C∗-algebras

Proposition 2.4. A prime C∗-algebra A is antiliminal if and only if soc(A) =
0.

Proof. The conclusion follows from [23, Proposition 2.3]. □

Let F2 be a free group on two generators and π be the universal unitary
representation of F2 on a Hilbert space H. We denote by C∗(F2) the full group
C∗-algebra in B(H) generated by the set {π(g) : g ∈ F2}. Choi [7] shows
that C∗(F2) is a primitive RFD C∗-algebra without nontrivial projection. In
addition, all properties mentioned above about C∗(F2) can be extended to
C∗(F), where F is any free group.

Proposition 2.5. C∗(F) is an antiliminal C∗-algebra.

Proof. By [7, Theorem 1], C∗(F) has no nontrivial projection. Thus soc(C∗(F))
= 0. It follows from Proposition 2.4 that C∗(F) is antiliminal. □

Proposition 2.6. A primitive C∗-algebra A is antiliminal if and only if π(A)∩
K(Hπ) = {0} for any faithful irreducible representation π of A.

Proof. Let π : A → B(Hπ) be a faithful irreducible representation. Sup-
pose that π(A) ∩ K(Hπ) = {0}. If soc(π(A)) ̸= 0, then there is a mini-
mal projection p ∈ soc(π(A)), this means that p ∈ K(Hπ), which contradicts
π(A) ∩ K(Hπ) = {0}. Thus soc(π(A)) = 0. It follows from Proposition 2.4
that π(A) is antiliminal.

Conversely, if π(A) is antiliminal, we assume that π(A)∩K(Hπ) ̸= {0}. By
[24, Theorem 6.1.5] or [11, Corollary 4.1.10], π(A) ⊃ K(Hπ), this means that
soc(π(A)) ̸= 0, which contradicts Proposition 2.4. Thus π(A) ∩ K(Hπ) = {0}.
Therefore π(A) is antiliminal if and only if π(A) ∩ K(Hπ) = {0}.
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Since π is an isomorphism, this implies that p is a minimal projection in A
if and only if π(p) is a minimal projection in π(A). This is to say, soc(A) =
0 if and only if soc(π(A)) = 0. It follows from Proposition 2.4 that A is
antiliminal if and only if π(A) is antiliminal. By the above claim, the conclusion
is proved. □

Pedersen shows that every UHF algebra is antiliminal ([24, Theorem 6.5.7]).
We have the following corollary.

Corollary 2.7. Every unital simple infinite-dimensional C∗-algebra is antil-
iminal.

Proof. Let A be a unital simple infinite dimensional C∗-algebra and π : A →
B(H) be a nontrivial irreducible representation. By assumption, π is faithful
and H is infinite-dimensional. Suppose that A is not antiliminal. Proposition
2.6 implies that π(A) ∩ K(H) ̸= {0}. By [24, Theorem 6.1.5], π(A) ⊃ K(H).
However, as π(A) is simple, this means that π(A) = K(H), which contradicts
that π(A) is unital. Thus A is antiliminal. The proof is complete. □

3. Main results

Let A be a C∗-algebra without unit and Ã = A⊕C be the unitization of A.

Lemma 3.1. The following statements are equivalent:

(a) every 2-local derivation on A is a derivation,

(b) every 2-local derivation on Ã is a derivation.

Proof. (a)=⇒(b): Let ∆ : Ã → Ã be a 2-local derivation. Then ∆(λ) =
λ∆(1) = 0 for each λ ∈ C. Thus
∆(a+ λ) = Da+λ,a(a+ λ) = Da+λ,a(a) +Da+λ,a(λ) = Da+λ,a(a) = ∆(a),

i.e.,
∆(a+ λ) = ∆(a).

This means that the restriction ∆|A is a 2-local derivation. By assumption,
∆|A is a derivation. By the above equation, it is easily verified that ∆ is a

derivation on Ã.
(b)=⇒(a): Let ∆ : A → A be a 2-local derivation. We define ∆̃ on Ã by

∆̃(a + λ) = ∆(a) for any a ∈ A and λ ∈ C. In particular, if D is a derivation

on A, then it is straightforward to check that D̃ is a derivation on Ã.

Firstly, we show that ∆̃ is a 2-local derivation. For any a, b ∈ A and λ, µ ∈ C,
as ∆̃(a + λ) = ∆(a) and ∆̃(b + µ) = ∆(b), there exists a derivation Da,b on

A such that ∆(a) = Da,b(a) and ∆(b) = Da,b(b). It follows that ∆̃(a + λ) =

∆(a) = Da,b(a) = D̃a,b(a + λ) and ∆̃(b + µ) = ∆(b) = Da,b(b) = D̃a,b(b + µ).

This implies that ∆̃ is a 2-local derivation on Ã. By assumption, ∆̃ is a

derivation. By the definition of ∆̃, we have ∆ = ∆̃|A, therefore ∆ : A → A is
a derivation. □
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Theorem 3.2. Let A be a C∗-algebra. Then every 2-local derivation ∆ :
Mn(A) → Mn(A), n ≥ 3, is a derivation. In particular, if A is commutative,
then every 2-local derivation ∆ : Mn(A) → Mn(A), n ≥ 2, is a derivation.

Proof. The conclusion follows from Lemma 3.1, [12, Corollary 2.17] and [15,
Corollary 3.7]. □

Theorem 3.3. Let A be a unital properly infinite C∗-algebra. Then every
2-local derivation on A is a derivation.

Proof. Take mutually orthogonal projections p1, p2 in A such that p1 ∼ 1A ∼
p2. Since p1 is properly infinite too, there exist mutually orthogonal subpro-
jections p3, p4 of p1 such that p3 ∼ p1 ∼ p4. Put p = p2+ p3+ p4, then 1A ∼ p
and p2, p3, p4 are mutually orthogonal equivalent subprojections of p. This
implies that

A ∼= pAp ∼= M3(p2Ap2).

The result follows from Theorem 3.2. □

As a direct application of Theorem 3.3, we have the following corollary.

Corollary 3.4. Let A be a Calkin algebra or Cuntz algebra. Then every 2-local
derivation on A is a derivation.

Theorem 3.5. Let A be a C∗-algebra and soc(A) be an essential ideal of A.
Then every 2-local derivation on A is a derivation.

Proof. The conclusion follows from [14, Theorem 3.6]. □

Theorem 3.6. Let A be a prime and not antiliminal C∗-algebra. Then every
2-local derivation on A is a derivation.

Proof. By assumption, it follows from Proposition 2.4 that soc(A) ̸= 0. In
addition, A is prime implies that soc(A) is essential. The conclusion follows
from Theorem 3.5. □

Theorem 3.7. Let A be a C∗-algebra with a separating family of irreducible

representations {πλ}. For each λ, if πλ(A) (πλ(Ã), if A is nonunital) is unital
properly infinite or not antiliminal, then every 2-local derivation on A is a
derivation.

Proof. By Lemma 3.1, it is sufficient to consider the case when A is a unital
C∗-algebra. Let ∆ : πλ(A) → πλ(A) be a 2-local derivation. By Theorem 3.3
or Theorem 3.6, ∆ is a derivation on πλ(A) for every λ. By Theorem 2.3, the
result holds. □

As a direct application of Theorem 3.7, we have the following corollary.

Corollary 3.8. Suppose that A is a C∗-algebra of type I. Then every 2-local
derivation on A is a derivation.

Theorem 3.9. The following statements are equivalent:
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(a) every 2-local derivation on any C∗-algebra is a derivation,
(b) every 2-local derivation on any unital C∗-algebra is a derivation,
(c) every 2-local derivation on any unital primitive antiliminal no properly

infinite C∗-algebra is a derivation.

Proof. By Lemma 3.1, (a)⇐⇒(b). Obviously, (b)=⇒(c).

(c)=⇒(b): Let A be a unital C∗-algebra. We denote by Â the set of all

nontrivial irreducible representations of A. We denote E = {π(A) : π ∈ Â},
F = {π(A) is not antiliminal : π ∈ Â}, G = {π(A) is properly infinite : π ∈ Â}
and H = {π(A) is antiliminal and is not properly infinite : π ∈ Â}. Then
E = F ∪G∪H. If π(A) ∈ F , by Theorem 3.6, every 2-local derivation on π(A)
is a derivation. If π(A) ∈ G, it follows from Theorem 3.3 that every 2-local
derivation on π(A) is a derivation. If π(A) ∈ H, by assumption, every 2-local
derivation on π(A) is a derivation. By Theorem 2.3, every 2-local derivation
on A is a derivation. The proof is complete. □

Theorem 3.10. Let A be an RFD C∗-algebra. Then every 2-local derivation
on A is a derivation.

Proof. If π is a finite-dimensional representation of A, then π(A) is a finite-
dimensional C∗-algebra. Thus soc(π(A)) = π(A). By Theorem 3.5, every
2-local derivation on π(A) is a derivation. By Theorems 2.3, every 2-local
derivation on A is a derivation. □

Corollary 3.11. Let F be any free group. Then every 2-local derivation on the
group C∗-algebra C∗(F) is a derivation.

Proof. Since C∗(F) is an RFD C∗-algebra, the conclusion follows from Theorem
3.10. □

Theorem 3.12. Let A be a unital C∗-algebra with a separating family of tracial
states {τλ}. Then every 2-local derivation on A is a derivation.

Proof. Let τ be a tracial state on A. Then there are a Hilbert space H, a unit
vector ξ ∈ H, and a representation πτ : A → B(H) such that πτ (A)ξ is dense
in H and τ(a) = (πτ (a)ξ, ξ) for every a ∈ A. We define

τ̂ : πτ (A)′′ → C by τ̂(a) = (aξ, ξ).

Then τ̂ is a faithful normal trace on πτ (A)′′.
Let ∆ : πτ (A) → πτ (A) be a 2-local derivation. For any a, b ∈ πτ (A), there

exists a derivationDa,b on πτ (A) such that ∆(a) = Da,b(a) and ∆(b) = Da,b(b).
By [10, Theorem 10.6], Da,b is weak

∗-continuous. This implies that there is an
element m ∈ πτ (A)′′ such that Da,b(ab) = mab− abm. Thus τ̂(Da,b(ab)) = 0.
We have 0 = τ̂(Da,b(ab)) = τ̂(Da,b(a)b+ aDa,b(b)) = τ̂(∆(a)b+ a∆(b)), i.e.,

τ̂(∆(a)b) = −τ̂(a∆(b)).
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Using the above equation, we obtain τ̂((∆(a+ b)−∆(a)−∆(b))c) = 0 for any
c ∈ πτ (A). Put c = (∆(a+ b)−∆(a)−∆(b))∗. Since τ̂ is faithful, we have

∆(a+ b)−∆(a)−∆(b) = 0.

So ∆ is additive. Therefore ∆ is a derivation on πτ (A). By assumption,⋂
kerπτλ = {0}. It follows from Theorem 2.3 that every 2-local derivation on

A is a derivation. The proof is complete. □

Corollary 3.13. Let A be a unital simple stably finite exact C∗-algebra. Then
every 2-local derivation on A is a derivation.

Proof. [5, Corollary V. 2.1.16] implies that A has a faithful tracial state. The
result follows from Theorem 3.12. □

Corollary 3.14. Let A be a unital simple QD C∗-algebra. Then every 2-local
derivation on A is a derivation.

Proof. By [5, Proposition V. 4.2.7], A has a faithful tracial state. The result
follows from Theorem 3.12. □

Remark 3.15. There is a separable simple unital C∗-algebra which is QD but
not exact (even nuclear). However, there is no known example of a stably finite
nuclear C∗-algebra which is not QD (cf. [5, pp. 460–463] or [6]).
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