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ON A DECOMPOSITION OF MINIMAL
COISOMETRIC EXTENSIONS

KuN Wook CHol

Let H be a separable, infinite dimensional, complex Hilbert space and
let L(H) be the algebra of all bounded linear operators on H. A dual
algebra is a subalgebra of L£(H) that contains the identity operator Iy
and is closed in the ultraweak operator topology on L(H).

The study of the property (A, ») which will be defined below appear-
ing frequently in the theory of dual algebras has been applied to the top-
ics of invariant subspace, dilation theory and reflexivity. In particular,
Chevreau-Exner-Pearcy obtained some interesting results concerning the
class Aj r, and minimal coisometric extensions. In this paper, we study
a decomposition theorem concerning a minimal coisometric extension of
an absolutely continuous contraction.

We shall denote by I the open unit disc in the complex plane C and we
write T for the boundary of D. For 1 < p < oo, we denote by L? = LP(T)
the Banach space of complex valued, Lebesgue measurable functions f
on T for which |f|? is Lebesgue integrable, and by L>® = L°(T) the
Banach algebra of all complex valued Lebesgue measurable, essentially
bounded functions on T. For 1 < p < co we denote by H? = HP(T)
the subspace of L? consisting of those functions whose negative Fourier
coeficients vanish. One knows that the preannihilator L(H>) of H>
in L' is the subspace H{] consisting of those functions g in H' whose
analytic extension g to ID satisfies g(0) = 0. It is well known that H is
the dual space of L'/H{}, where the duality is given by the pairing

1 2m

1) <fld>= 5 i fleM)glet) dt, fe H™, |g] € L'/H;.

Supposes A is a dual algebra in £(H). Let C; = C;(H) is the von
Neumann-Schatten ideal of trace class operators in £(H) under the trace
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norm and let -4 denote the preannihilator of A in C;. Let Q4 denote
the quotient space C;/*A.

The following provides a good relationship between the function space
H® and the dual algebra A generated by a single absolutely continuous
contraction.

Sz.-NAGY-Fo1as FUNCTIONAL CALCULUS [1, Theorem 4.1]. Let T
be an absolutely continuous contraction in L(H). Then there is an alge-
bra homomorphism

(2) ér: H® — Ar

defined by ®1(f) = f(T) such that

(8) B2(1) = Ln, r(6) = T, () |@r(F| < flls f € H, () &1
is continuous if both H*® and Ar are given weak*-topologies, (d) the
range of & is weak*-dense in Ar, (e) there exists a bounded, linear,
one-to-one map

(3) ¢r: Qp — L'/ H]

such that $1 = ¢%, and (f) if &7 is an isometry, then &7 is a weak*
homeomorphism of H® onto Ar and ¢p is an isometry of Qr onto
L'/H;.

For z and y in H, we denote a rank one operator (z @ y)(u) = (u,y)z
for all u in H.

Suppose m and n are any cardinal numbers such that 1 < m,n < R,.
A dual algebra A will be said to have property (A, ) if every m x n
system of simultaneous equations of the form

(4) [z; ®y;] =[Lij], 0<i<m, 0< 7 <n,

where {[L;;]}o<i<m is an arbitrary m x n array from Q 4, has a solution
o<y

{zi}o<icm, {y;}0§j<n consisting of a pair of sequences of vectors from
H. Furthermore, if m, n € N and r is a fixed real number satisfying
r > 1, then a dual algebra A has property (A, ,)(r) if for every s > r and
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every m X n array from Q 4, there exist sequences {z;}o<icm, {yj}o<j<n
that satisfy (4) and also satisfy the following conditions:

1/2
(5a) lzill < {s > WLl , 0<i<m
0<j<n
and
1/2
(5b) sl < {s D> NLsll|] » 0<j<n
0<i<m

Finally, a dual algebra ACL(H) has property (A, x,(r)) for some real
number r > 1, if for every s > r and every array {[L;;]} o<i<m from Q4
J 0<ji< e

with summable rows, there exist sequences {z;}o<i<m and {yjto<j<oo
of vectors from H that satisfy (4), (5a) and (5b) with the replacement
of n by Ry. Properties (Ar,,n(r)) and (Ar, x,(r)) are defined similarly.
For brevity, we shall denote (A, ,) by (A,).

We denote by Q¢ the predual space Q 4, of Ar.

For an arbitrary Borel subset ¥ of T, we define the subspace L?(X)
of LP(T), 1 < p < oo, as the set of all functions f in LP(T) such that
f = 0 almost everywhere on T \ ¥. The space H*(X) is the closure
in L*(%) of the linear manifold consisting of those functions that agree
with some polynomials on ¥ (cf. [2]). Let T be an absolutely continuous
contraction in £(H). Let

(6) B=U*®R

denote a minimal coisometric extension of T, where U is an unilateral
shift operator of some multiplicity in £(U/) and R is an unitary operator
in £L(R). Then it follows from [3, Lemma 3.2] that R is absolutely
continuous. Hence there exists a Borel subsets ¥ of T such that the
measure m|Y defined on a Borel subset A of T by

(7) (m|E)(A) =m(ZNA)
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is a scalar spectral measure for R. For any vectors = and y in R, if we
define a complex Borel measure p, , on T defined by

(8) pay(A) = (E(A)z,y),

where F is the spectral measure corresponding to the unitary operatorR,
then it is absolutely continuous with respect to m|X. Hence there is the
Radon-Nikodym derivative z-y € L!(Z) of , , with respect to m|Z (cf.
[2, p 32]). We write [z -y] for the equivalence class of z-y in the quotient
space LY(T)/H}(T).

LEMMA 1. Suppose that T is an absolutely continuous contraction in
L(H) and has coisometric extension

(9) B=U"®R
in LU & R) with R # (0). Assume that Ry and R, are reducing
subspaces for R with Ry C Ry. fw € Ry and z € Ry, then[w-2] = 0.
Proof. 1t follows from [3, Lemma 3.9] that
(10) [w- 2] = ¢p([w @ 2])-
For any h € H*>, we have
< h,Jw-z] >=<h,¢p(lwR zp) >
=< &g(h),[w®z|p >
(11) = (h(g()w),z[) "’
= (h(R)w, z) = 0.
By hypothesis, we have the lemma.
The following lemma comes from [5, Theorem 1].

LEMMA 2. Let A be a von Neumann algebra. Then the following are
equivalent:
(a) A has a separating vector;
(b) A has property (A),and;
(c) A has property (A x,)(1).
We write W*(T') for the von Neumann algebra generated by a con-

traction operator 7. The following decomposition theorem is an im-
provement of [3, Proposition 3.10].
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THEOREM 3. Suppose that T is an absolutely continuous contraction
in £L(H) and has minimal coisometric extension

(12) B=U"®R

in LU @ R) with R # (0). Then there exist some cardinal number m
with 1 < m < Ny, a decreasing sequence {Z:i}o<icm of Borel sets in T,
and a decomposition

(13) Rzﬁo@Rl@Rz@"'

(m)

of unitary operators R; € L(R;),0 <1 < m such that
(a) m|Z; is a scalar spectral measure for R;,
(b) W*(R;) has a property (A x,(1)),
(c) R; is unitarily equivalent to the operator M,:. of multiplication by
the position function on L*(%;),
(d) if we denote by R the subspace of R;, corresponding to H%(Z) under
the unitary equivalence in (c), then

(14) U »icdn),

o<i<m

where A is the orthogonal projection of K onto R,
(e) foranyr =rg®r; @ - € > Bo<i<cmRi, we have [r;-7;] = 0 if i # ;.
(m)
Proof. Since R # (0), it is obvious that AH # (0).

Case 1. Assume that AH = R. Let e be a nonzero element of R. By [4,
Proposition 10.4], there is a separating vector ey for W*(R) such that

(15) e € W*(R)ey.

Set Ry = W*(R)eo.Then Rq is a reducing subspace for R. By the
multiplicity theory of normal operators (cf. 4, p.299-p308)), if we denote
Ry = R|Ry, then Ry is unitarily equivalent to the operator M,: of
multiplication by the position function on L?*(%), where £y = o(R).
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Moreover, it follows easily that Ry satisfies (a),(b) and Ry c AH. If
Ro = R, we stop here and take m = 1. Otherwise, since R|Ry is an
unitary operator, we can repeat this process. Then by the mathematical
induction, we obtain a decomposition

(16) R=RoOR &
S ——
(m)

which satisfies (a), (b), (c), and (d).

Case 2. Assume that AH # R. Let us follow the method of [3, Propo-
sition 3.10]. Then we can obtain a reducing subspace Rg D R for R
such that o(R) = T and Ry = R|Ry is a bilateral shift operator mul-
tiplicity one. Moreover, if we denote Ry = R|Rq by the proof of [3,
Proposition 3.10] Ry satisfies (a) and R C AH. But it is obvious that
the von Neumann algebra generated by a bilateral shift operator has a
separating vector. If Ry = R, we stop here as above. Otherwise, since
R|R{ is an unitary operator,we can repeat this process and we obtain
a required decomposition. Furthermore, Lemma 1 shows (e¢). Finally,
we shall show (b). Since W*(R;),0 < i < m, has a separating vector,
by the Lemma 2, W*(R;) has property (A x,(1)). Hence the proof is
complete.

References

1. H. Bercovici, C. Foias and C. Pearcy, Dual algebra with applications to nvariant
subspaces and dilation theory, CBMS Conf. Ser. in Math. No. 56, Amer. Math.
Soc., Providence, R.I1., 1985.

2. B. Chevreau, G. Exner and C. Pearcy, On the structure of contraction operators
IIT, Michigan Math. J. 36 (1989), 29-62.

3. B. Chevreau and C. Pearcy, On the structure of contraction operators I, J. Funct.
Anal. 76 (1988), 1-29.

4. J. Conway, A course in Functional Analysis, GTM serics 96, Springer-Verlag,
1985.

5. M. Marsalli, Ph.D. Thesis, University of Michigan, 1985

Department of Mathematics
College of Natural Sciences
Kyungpook National University
Taegu 702-701, Korea



