ON A DECOMPOSITION OF MINIMAL COISOMETRIC EXTENSIONS

Kun Wook Choi

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . A dual algebra is a subalgebra of $\mathcal{L}(\mathcal{H})$ that contains the identity operator $I_{\mathcal{H}}$ and is closed in the ultraweak operator topology on $\mathcal{L}(\mathcal{H})$.

The study of the property $(\mathbb{A}_{m,n})$ which will be defined below appearing frequently in the theory of dual algebras has been applied to the topics of invariant subspace, dilation theory and reflexivity. In particular, Chevreau-Exner-Pearcy obtained some interesting results concerning the class \mathbb{A}_{1,\aleph_0} and minimal coisometric extensions. In this paper, we study a decomposition theorem concerning a minimal coisometric extension of an absolutely continuous contraction.

We shall denote by $\mathbb D$ the open unit disc in the complex plane $\mathbb C$ and we write $\mathbb T$ for the boundary of $\mathbb D$. For $1 \leq p < \infty$, we denote by $L^p = L^p(\mathbb T)$ the Banach space of complex valued, Lebesgue measurable functions f on $\mathbb T$ for which $|f|^p$ is Lebesgue integrable, and by $L^\infty = L^\infty(\mathbb T)$ the Banach algebra of all complex valued Lebesgue measurable, essentially bounded functions on $\mathbb T$. For $1 \leq p \leq \infty$ we denote by $H^p = H^p(\mathbb T)$ the subspace of L^p consisting of those functions whose negative Fourier coefficients vanish. One knows that the preannihilator $^\perp(H^\infty)$ of H^∞ in L^1 is the subspace H^1_0 consisting of those functions g in H^1 whose analytic extension g to $\mathbb D$ satisfies g(0) = 0. It is well known that H^∞ is the dual space of L^1/H^1_0 , where the duality is given by the pairing

(1)
$$\langle f, [g] \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(e^{it}) g(e^{it}) dt, \quad f \in H^{\infty}, \ [g] \in L^1/H_0^1.$$

Supposes \mathcal{A} is a dual algebra in $\mathcal{L}(\mathcal{H})$. Let $\mathcal{C}_1 = \mathcal{C}_1(\mathcal{H})$ is the von Neumann-Schatten ideal of trace class operators in $\mathcal{L}(\mathcal{H})$ under the trace

Received April 18, 1994.

This work was partially supported by TGRC-KOSEF, 1993.

norm and let ${}^{\perp}\mathcal{A}$ denote the preannihilator of \mathcal{A} in \mathcal{C}_1 . Let $\mathcal{Q}_{\mathcal{A}}$ denote the quotient space $\mathcal{C}_1/{}^{\perp}\mathcal{A}$.

The following provides a good relationship between the function space H^{∞} and the dual algebra \mathcal{A}_T generated by a single absolutely continuous contraction.

Sz.-Nagy-Foias Functional Calculus [1, Theorem 4.1]. Let T be an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$. Then there is an algebra homomorphism

$$\Phi_T: H^{\infty} \longrightarrow \mathcal{A}_T$$

defined by $\Phi_T(f) = f(T)$ such that

(a) $\Phi_T(1) = 1_{\mathcal{H}}$, $\Phi_T(\xi) = T$, (b) $\|\Phi_T(f)\| \leq \|f\|_{\infty}$, $f \in H^{\infty}$, (c) Φ_T is continuous if both H^{∞} and \mathcal{A}_T are given weak*-topologies, (d) the range of Φ_T is weak*-dense in \mathcal{A}_T , (e) there exists a bounded, linear, one-to-one map

$$\phi_T: \mathcal{Q}_T \longrightarrow L^1/H_0^1$$

such that $\Phi_T = \phi_T^*$, and (f) if Φ_T is an isometry, then Φ_T is a weak* homeomorphism of H^{∞} onto \mathcal{A}_T and ϕ_T is an isometry of \mathcal{Q}_T onto L^1/H_0^1 .

For x and y in \mathcal{H} , we denote a rank one operator $(x \otimes y)(u) = (u, y)x$ for all u in \mathcal{H} .

Suppose m and n are any cardinal numbers such that $1 \leq m, n \leq \aleph_0$. A dual algebra \mathcal{A} will be said to have property $(\mathbb{A}_{m,n})$ if every $m \times n$ system of simultaneous equations of the form

$$[x_i \otimes y_j] = [L_{ij}], \ 0 \le i < m, \ 0 \le j < n,$$

where $\{[L_{ij}]\}_{\substack{0 \leq i < m \ 0 \leq j < n}}$ is an arbitrary $m \times n$ array from $\mathcal{Q}_{\mathcal{A}}$, has a solution $\{x_i\}_{0 \leq i < m}$, $\{y_j\}_{0 \leq j < n}$ consisting of a pair of sequences of vectors from \mathcal{H} . Furthermore, if $m, n \in \mathbb{N}$ and r is a fixed real number satisfying $r \geq 1$, then a dual algebra \mathcal{A} has property $(\mathbb{A}_{m,n})(r)$ if for every s > r and

every $m \times n$ array from $\mathcal{Q}_{\mathcal{A}}$, there exist sequences $\{x_i\}_{0 \leq i < m}$, $\{y_j\}_{0 \leq j < n}$ that satisfy (4) and also satisfy the following conditions:

(5a)
$$||x_i|| \le \left(s \sum_{0 \le j < n} ||[L_{ij}]||\right)^{1/2}, \quad 0 \le i < m$$

and

(5b)
$$||y_j|| \le \left(s \sum_{0 \le i < m} ||[L_{ij}]||\right)^{1/2}, \quad 0 \le j < n.$$

Finally, a dual algebra $\mathcal{A}\subset\mathcal{L}(\mathcal{H})$ has property $(\mathbb{A}_{m,\aleph_0}(r))$ for some real number $r\geq 1$, if for every s>r and every array $\{[L_{ij}]\}_{\substack{0\leq i\leq m\\0\leq j<\infty}}$ from $\mathcal{Q}_{\mathcal{A}}$ with summable rows, there exist sequences $\{x_i\}_{0\leq i< m}$ and $\{y_j\}_{0\leq j<\infty}$ of vectors from \mathcal{H} that satisfy (4), (5a) and (5b) with the replacement of n by \aleph_0 . Properties $(\mathbb{A}_{\aleph_0,n}(r))$ and $(\mathbb{A}_{\aleph_0,\aleph_0}(r))$ are defined similarly. For brevity, we shall denote $(\mathbb{A}_{n,n})$ by (\mathbb{A}_n) .

We denote by Q_T the predual space Q_{A_T} of A_T .

For an arbitrary Borel subset Σ of \mathbb{T} , we define the subspace $L^p(\Sigma)$ of $L^p(\mathbb{T})$, $1 \leq p \leq \infty$, as the set of all functions f in $L^p(\mathbb{T})$ such that f = 0 almost everywhere on $\mathbb{T} \setminus \Sigma$. The space $H^2(\Sigma)$ is the closure in $L^2(\Sigma)$ of the linear manifold consisting of those functions that agree with some polynomials on Σ (cf. [2]). Let T be an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$. Let

$$(6) B = U^* \oplus R$$

denote a minimal coisometric extension of T, where U is an unilateral shift operator of some multiplicity in $\mathcal{L}(\mathcal{U})$ and R is an unitary operator in $\mathcal{L}(\mathcal{R})$. Then it follows from [3, Lemma 3.2] that R is absolutely continuous. Hence there exists a Borel subsets Σ of \mathbb{T} such that the measure $m|\Sigma$ defined on a Borel subset Δ of \mathbb{T} by

(7)
$$(m|\Sigma)(\Delta) = m(\Sigma \cap \Delta)$$

is a scalar spectral measure for R. For any vectors x and y in \mathcal{R} , if we define a complex Borel measure $\mu_{x,y}$ on \mathbb{T} defined by

(8)
$$\mu_{x,y}(\Delta) = (E(\Delta)x, y),$$

where E is the spectral measure corresponding to the unitary operator R, then it is absolutely continuous with respect to $m|\Sigma$. Hence there is the Radon-Nikodym derivative $x \cdot y \in L^1(\Sigma)$ of $\mu_{x,y}$ with respect to $m|\Sigma$ (cf. [2, p 32]). We write $[x \cdot y]$ for the equivalence class of $x \cdot y$ in the quotient space $L^1(\mathbb{T})/H_0^1(\mathbb{T})$.

LEMMA 1. Suppose that T is an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$ and has coisometric extension

$$(9) B = U^* \oplus R$$

in $\mathcal{L}(\mathcal{U} \oplus \mathcal{R})$ with $\mathcal{R} \neq (0)$. Assume that \mathcal{R}_1 and \mathcal{R}_2 are reducing subspaces for R with $\mathcal{R}_1 \subset \mathcal{R}_2^{\perp}$. If $w \in \mathcal{R}_1$ and $z \in \mathcal{R}_2$, then $[w \cdot z] = 0$.

Proof. It follows from [3, Lemma 3.9] that

(10)
$$[w \cdot z] = \phi_B([w \otimes z]).$$

For any $h \in H^{\infty}$, we have

(11)
$$\langle h, [w \cdot z] \rangle = \langle h, \phi_B([w \otimes z]_B) \rangle$$

$$= \langle \Phi_B(h), [w \otimes z]_B \rangle$$

$$= (h(B)w, z)$$

$$= (h(R)w, z) = 0.$$

By hypothesis, we have the lemma.

The following lemma comes from [5, Theorem 1].

LEMMA 2. Let A be a von Neumann algebra. Then the following are equivalent:

- (a) A has a separating vector;
- (b) A has property (A_1) , and;
- (c) A has property $(\mathbb{A}_{1,\aleph_0})(1)$.

We write $W^*(T)$ for the von Neumann algebra generated by a contraction operator T. The following decomposition theorem is an improvement of [3, Proposition 3.10].

THEOREM 3. Suppose that T is an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$ and has minimal coisometric extension

$$(12) B = U^* \oplus R$$

in $\mathcal{L}(\mathcal{U} \oplus \mathcal{R})$ with $\mathcal{R} \neq (0)$. Then there exist some cardinal number m with $1 \leq m \leq \aleph_0$, a decreasing sequence $\{\Sigma_i\}_{0 \leq i < m}$ of Borel sets in \mathbb{T} , and a decomposition

$$(13) R = \underbrace{R_0 \oplus R_1 \oplus R_2 \oplus \cdots}_{(m)}$$

of unitary operators $R_i \in \mathcal{L}(\mathcal{R}_i), 0 \leq i < m$ such that

- (a) $m|\Sigma_i$ is a scalar spectral measure for R_i ,
- (b) $W^*(R_i)$ has a property $(\mathbb{A}_{1,\aleph_0}(1))$,
- (c) R_i is unitarily equivalent to the operator $M_{e^{ii}}$ of multiplication by the position function on $L^2(\Sigma_i)$,
- (d) if we denote by \mathcal{R}_{i}^{+} the subspace of \mathcal{R}_{i} , corresponding to $H^{2}(\Sigma)$ under the unitary equivalence in (c), then

(14)
$$\bigcup_{0 \le i \le m} \mathcal{R}_i^+ \subset \overline{(A\mathcal{H})},$$

where A is the orthogonal projection of K onto R,

(e) for any $r = \underbrace{r_0 \oplus r_1 \oplus \cdots}_{(m)} \in \sum \bigoplus_{0 \le i < m} R_i$, we have $[r_i \cdot r_j] = 0$ if $i \ne j$.

Proof. Since $\mathcal{R} \neq (0)$, it is obvious that $\overline{AH} \neq (0)$.

Case 1. Assume that $\overline{AH} = \mathcal{R}$. Let e be a nonzero element of \mathcal{R} . By [4, Proposition 10.4], there is a separating vector e_0 for $\mathcal{W}^*(R)$ such that

$$(15) e \in \overline{\mathcal{W}^*(R)e_0}.$$

Set $\mathcal{R}_0 = \overline{W^*(R)e_0}$. Then \mathcal{R}_0 is a reducing subspace for R. By the multiplicity theory of normal operators (cf. [4, p.299-p308]), if we denote $R_0 = R|\mathcal{R}_0$, then R_0 is unitarily equivalent to the operator $M_{e^{it}}$ of multiplication by the position function on $L^2(\Sigma_0)$, where $\Sigma_0 = \sigma(R)$.

Moreover, it follows easily that R_0 satisfies (a),(b) and $\mathcal{R}_0^+ \subset \overline{A\mathcal{H}}$. If $\mathcal{R}_0 = \mathcal{R}$, we stop here and take m = 1. Otherwise, since $R|\mathcal{R}_0^+$ is an unitary operator, we can repeat this process. Then by the mathematical induction, we obtain a decomposition

(16)
$$R = \underbrace{R_0 \oplus R_1 \oplus \cdots}_{(m)}$$

which satisfies (a), (b), (c), and (d).

Case 2. Assume that $\overline{AH} \neq \mathcal{R}$. Let us follow the method of [3, Proposition 3.10]. Then we can obtain a reducing subspace $\mathcal{R}_0 \supset \mathcal{R}_0^+$ for R such that $\sigma(R) = \mathbb{T}$ and $R_0 = R|\mathcal{R}_0$ is a bilateral shift operator multiplicity one. Moreover, if we denote $R_0 = R|\mathcal{R}_0$ by the proof of [3, Proposition 3.10] R_0 satisfies (a) and $\mathcal{R}_0^+ \subset \overline{AH}$. But it is obvious that the von Neumann algebra generated by a bilateral shift operator has a separating vector. If $\mathcal{R}_0 = \mathcal{R}$, we stop here as above. Otherwise, since $R|\mathcal{R}_0^+$ is an unitary operator,we can repeat this process and we obtain a required decomposition. Furthermore, Lemma 1 shows (e). Finally, we shall show (b). Since $\mathcal{W}^*(R_i)$, $0 \leq i < m$, has a separating vector, by the Lemma 2, $\mathcal{W}^*(R_i)$ has property $(A_{1,\aleph_0}(1))$. Hence the proof is complete.

References

- 1. H. Bercovici, C. Foias and C. Pearcy, Dual algebra with applications to invariant subspaces and dilation theory, CBMS Conf. Ser. in Math. No. 56, Amer. Math. Soc., Providence, R.I., 1985.
- 2. B. Chevreau, G. Exner and C. Pearcy, On the structure of contraction operators III, Michigan Math. J. 36 (1989), 29-62.
- 3. B. Chevreau and C. Pearcy, On the structure of contraction operators I, J. Funct. Anal. 76 (1988), 1-29.
- 4. J. Conway, A course in Functional Analysis, GTM series 96, Springer-Verlag, 1985.
- 5. M. Marsalli, Ph.D. Thesis, University of Michigan, 1985

Department of Mathematics College of Natural Sciences Kyungpook National University Taegu 702-701, Korea