• 제목/요약/키워드: in situ testing

검색결과 224건 처리시간 0.025초

지중 열반응 현장시험에서 소비전력 변동의 영향 (Influences of Power Fluctuation on In-Situ Ground Thermal Response Testing)

  • 김진상;박근우
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.707-712
    • /
    • 2006
  • Knowing the ground thermal conductivity is very importnat in designing ground heat exchangers. Knowledge of the ground soil and rock composition information dose not guarantee the prediction of accurate thermal information. In Situ testing of ground heat exchangers is becoming popular. However, in situ testing are performed at construction sites in real life. Adequate data collection and analysis are not easy mainly due to poor power quality. Power fluctuation also causes the fluctuation of received data. The power quality must be maintained during the entire in situ testing processes. To accurately analyse the test data, the understanding of the response of the power fluctuation is essential. Testing under the power quality varied by tester is very difficult. Analyzing power variation by numerical simulation is a realistic option. By varying power in a sinosuidal manner, its effects on predicting thermal conductivity from thermal response plots made from the test data are examined.

  • PDF

조합법에 의한 현장 콘크리트 강도의 비파괴 측정에 관한 연구 (A Study on the Determination of In-Situ Concrete Strength by Combined Nondestructive Testing Method)

  • 임선택;김창환;김영진;정한중
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.114-119
    • /
    • 1992
  • The main disadvantages of destructive testing methods are the delay in obtaining test results, the relatively high cost of testing, and the lack of reproducibility in the test results. As a result, nondestructive testing methods are generally used. There are three objectives in this paper. The first is to determine the equations of the compressive strength of concrete estimated by Schmidt hammer technique, ultrasonic pulse velocity method and combined method respectively in laboratory. The second is to determine the correction factors according to the concrete age which affects most in evaluating the compressive strength of in-situ concrete. The third is to examine the applicability of the equations to evaluation of the compressive strength of in-situ concrete structures.

  • PDF

원위치 X-ray CT 촬영이 가능한 암석의 수리-역학 실험용 삼축셀 개발 (Development of Triaxial Cells Operable with In Situ X-ray CT for Hydro-Mechanical Laboratory Testing of Rocks)

  • 장리;염선;신휴성
    • 한국지반공학회논문집
    • /
    • 제36권9호
    • /
    • pp.45-55
    • /
    • 2020
  • X-ray CT는 암석시편의 공극 및 균열과 같은 내부 미세구조와 손상들의 정량적 분석에 활용되어 왔다. 원위치 CT는 외력 등 다양한 외적 요인에 영향을 받고 있는 암석 시편의 내외부 변화 과정을 관찰할 수 있게 해준다. 이의 확인을 위해, 암반/지반재료 특성분석에 활용한 원위치 X-ray CT 기술에 관한 최신 연구동향을 파악하였으며, 원위치 CT이미징이 가능한 암석의 수리-역학적 실험용 삼축셀을 개발하였다. 직경 25~50 mm 화강암 및 사암 코아시편의 원위치 CT이미징이 성공적으로 진행되었으며, 34~105 ㎛ 범위의 픽셀피치의 해상도를 취득할 수 있었다. 본 사전검토 촬영 실험을 통해 마이크로미터 스케일에서 암석의 내부구조 변화의 원위치 CT관찰이 가능한 것을 파악하였다. 요오드화 칼륨 용액은 CT이미지의 대비를 증가시키고 암석의 수리-역학 실험에서 주입유체로 사용할 수 있다.

전자기력 측정과 방향성주파수 응답함수를 이용한 능동 자기베어링 시스템의 운전중 모드시험 및 매개변수 규명 (In-situ modal testing and parameter identification of active magnetic bearing system by magnetic force measurement and the use of directional frequency response functions)

  • 하영호;이종원
    • 대한기계학회논문집A
    • /
    • 제21권7호
    • /
    • pp.1156-1165
    • /
    • 1997
  • Complex modal testing is employed for the in-situ parameter identification of a four-axis active magnetic bearing system while the system is in operation. In the test, magnetic bearings are used as exciters as well as actuators for feedback control. The experimental results show that the directional frequency response function, which is properly defined in the complex domain, is a powerful tool for identification of bearing as well as modal parameters. It is also shown that the position and current stiffnesses can be accurately estimated using the relations between the measured forces, displacements, and currents.

Geotechnical Parameter Assessment for Tall Building Foundation Design

  • Poulos, Harry G.;Badelow, Frances
    • 국제초고층학회논문집
    • /
    • 제4권4호
    • /
    • pp.227-239
    • /
    • 2015
  • This paper discusses the design parameters that are required for the design of high-rise building foundations, and suggests that the method of assessment for these parameters should be consistent with the level of complexity involved for various stages in the design process. Requirements for effective ground investigation are discussed, together with relevant in-situ and laboratory test techniques for deriving the necessary strength and stiffness parameters. Some empirical correlations are also presented to assist in the early stages of design, and to act as a check for parameters that are deduced from more detailed testing. Pile load testing is then discussed and a method of interpreting bi-directional tests to obtain pile design parameters is outlined. Examples of the application of the assessment process are described, including high-rise projects in Dubai and Saudi Arabia.

Dedicated preparation for in situ transmission electron microscope tensile testing of exfoliated graphene

  • Kim, Kangsik;Yoon, Jong Chan;Kim, Jaemin;Kim, Jung Hwa;Lee, Suk Woo;Yoon, Aram;Lee, Zonghoon
    • Applied Microscopy
    • /
    • 제49권
    • /
    • pp.3.1-3.7
    • /
    • 2019
  • Graphene, which is one of the most promising materials for its state-of-the-art applications, has received extensive attention because of its superior mechanical properties. However, there is little experimental evidence related to the mechanical properties of graphene at the atomic level because of the challenges associated with transferring atomically-thin two-dimensional (2D) materials onto microelectromechanical systems (MEMS) devices. In this study, we show successful dry transfer with a gel material of a stable, clean, and free-standing exfoliated graphene film onto a push-to-pull (PTP) device, which is a MEMS device used for uniaxial tensile testing in in situ transmission electron microscopy (TEM). Through the results of optical microscopy, Raman spectroscopy, and TEM, we demonstrate high quality exfoliated graphene on the PTP device. Finally, the stress-strain results corresponding to propagating cracks in folded graphene were simultaneously obtained during the tensile tests in TEM. The zigzag and armchair edges of graphene confirmed that the fracture occurred in association with the hexagonal lattice structure of graphene while the tensile testing. In the wake of the results, we envision the dedicated preparation and in situ TEM tensile experiments advance the understanding of the relationship between the mechanical properties and structural characteristics of 2D materials.

지반의 교란을 최소화 한 원위치시험법 개발 및 적용 : 스크류재하시험 (Low-Soil Disturbance In-Situ Test Method Development and Its Application : Screw Plate Loading Test)

  • 이용수;황웅기;최용규;김태형
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.977-986
    • /
    • 2009
  • Sampling disturbance can introduce considerable errors in the laboratory estimation of geotechnical properties of soils, and the results obtained from sophisticated sampling and careful laboratory testing are not matching with field behavior. Therefore, it is advantage to adopt in-situ testing techniques for the estimation of geotechnical parameters. Therefore, Screw plate loading test, one of new field test technologies, has been investigated in this study. This test can be utilized to find out important properties of soils such as load-displacement, elastic modulus, and shear strength. The screw plate loading test modified from the plate loading test is an experiment underneath ground by inserting a spiral type of auger screw. The structure and characteristics of the screw plate loading test device was examined in detail. In addition, The new screw plate loading test device was manufactured to refer the previous studies. The reliability of developing screw plate loading test was examined through the analysis of the laboratory test.

  • PDF

TEM sample preparation using micro-manipulator for in-situ MEMS experiment

  • Hyunjong Lee;Odongo Francis Ngome Okello;Gi-Yeop Kim;Kyung Song;Si-Young Choi
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.8.1-8.7
    • /
    • 2021
  • Growing demands for comprehending complicated nano-scale phenomena in atomic resolution has attracted in-situ transmission electron microscopy (TEM) techniques for understanding their dynamics. However, simple to safe TEM sample preparation for in-situ observation has been limited. Here, we suggested the optical microscopy based micro-manipulating system for transferring TEM samples. By adopting our manipulator system, several types of samples from nano-wires to plate-like thin samples were transferred on micro-electro mechanical systems (MEMS) chip in a single step. Furthermore, the control of electrostatic force between the sample and the probe tip is found to be a key role in transferring process.

수압파쇄 현장시험을 통한 국내 지반의 초기응력 분포양상 해석 (Analysis of In-Situ Stress Regime from Hydraulic Fracturing Field Measurements in Korea)

  • 최성웅
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.111-116
    • /
    • 2008
  • Since the hydraulic fracturing field testing method was introduced first to Korean geotechnical engineers in 1994, there have been lots of progresses in a hardware system as well as an interpretation tool. The hydrofracturing system of first generation was the pipe-line type, and it has been developed to a wire-line system at their second generation. The current up-to-date system is more compact and is able to be operated by all-in-one system. With a progress in a hardware system, the software for analyzing in-situ stress regime has also been progressed. The shut-in pressure, which is the most ambiguous parameter to be obtained from hydrofracturing pressure curves, can now be acquired automatically from the various methods. While the hardware and software for hydrofracturing tests are being developed during the last decade, the author could accumulate the field test results which can cover the almost whole area of South Korea. Currently these field data are used widely in a feasibility study or a preliminary design step for tunnel construction in Korea. Regarding the difficulties in a site selection and a test performance for the in-situ stress measurement at an off-shore area, the in-situ stress regime obtained from the field experiences in the land area can be used indirectly for the design of a sub-sea tunnel. From the hydrofracturing stress measurements, the trend of magnitude and direction of in-situ stress field was shown identically with the geological information in Korea.

  • PDF