DOI QR코드

DOI QR Code

Geotechnical Parameter Assessment for Tall Building Foundation Design

  • Published : 2015.12.31

Abstract

This paper discusses the design parameters that are required for the design of high-rise building foundations, and suggests that the method of assessment for these parameters should be consistent with the level of complexity involved for various stages in the design process. Requirements for effective ground investigation are discussed, together with relevant in-situ and laboratory test techniques for deriving the necessary strength and stiffness parameters. Some empirical correlations are also presented to assist in the early stages of design, and to act as a check for parameters that are deduced from more detailed testing. Pile load testing is then discussed and a method of interpreting bi-directional tests to obtain pile design parameters is outlined. Examples of the application of the assessment process are described, including high-rise projects in Dubai and Saudi Arabia.

Keywords

References

  1. Bermingham, P. and Janes, M. (1989). "An Innovative Approach to Load Testing of High Capacity Piles". Proc. Int. Conf. Piling & Deep Founds, 1, pp. 409-413.
  2. Bermingham, P., Ealy, C. D., and White, J. K. (1994). "A Comparison of Statnamic and Static Field Tests at Seven FHWA Sites". Proc. Int. Conf. Des. and Constrn. of Deep Founds., FHWA, Orlando, 2, pp. 616-630.
  3. Briaud, J-.L. (1992). "The Pressuremeter". Balkema, Rotterdam.
  4. Bustamante, M. and Gianeselli, L. (1982). "Pile bearing capacity prediction by means of static penetrometer CPT". Proc. ESOPT II, Amsterdam, 2, pp. 492-500
  5. Chen, Y.-J. and Fang, Y.-C. (2009). "Critical Evaluation of Compression Interpretation Criteria for Drilled Shafts". J. Geot. Geoenv. Eng., ASCE, 135, pp. 1056-1069. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000027
  6. Chin, F. K. (1970). "Estimation of the Ultimate Load of Pile from Tests not Carried to Failure". Proc. 2nd S.E. Asian Conf. Soil Mech. Found. Eng., Singapore, 81-92.
  7. Davisson, M. T. (1972). "High capacity piles". Proc. Lecture Series on Innovations in Foundation Construction. ASCE Illinois Section, Chicago.
  8. Decourt, L. (1982). "Prediction of the Bearing Capacity of Piles Based Exclusively on N values of the SPT". Proc. ESOPT II, Amsterdam, 1, pp. 29-34.
  9. Decourt, L. (1995). "Prediction of Load-Settlement Relationships for Foundations on the Basis of the SPT-T". Ciclo de Conferencias Intern. "Leonardo Zeevaert", UNAM, Mexico, 85-104.
  10. De Ruiter, J. and Beringen, F. L. (1979). "Pile foundations for large North Sea structures". Marine Geotechs. 3(3), pp. 267-314. https://doi.org/10.1080/10641197909379805
  11. Frank, R. and Magnan, J.-P. (1995). "Cone Penetration Testing in France: National Report". Proc. CPT '95, Linkoping, Swedish Geot. Society, 3, pp. 147-156.
  12. Fujioka, T. and Yamada, K. (1994). "The Development of a New Pile Load Testing System". Proc. Int. Conf. Des. and Constrn. of Deep Founds., FHWA, Orlando, 2: 670-684.
  13. Fuller, F. M. and Hoy, H. E. (1971). "Pile Load Tests Including Quick Load Test Method, Conventional Methods and Interpretations". High. Res. Rec. 333, pp. 74-86.
  14. Goble, G. G. (1994). "Pile Driving - An International State of-the-Art". Proc. Int. Conf. Des. and Constrn. of Deep Founds., FHWA, Orlando, 1, pp. 1-26.
  15. Haberfield, C. M. (2013). "Tall Tower Foundations - from concept to construction". Advances in Foundation Engineering, Ed. K. K. Phoon et al., Research Publishing Services, 33-65.
  16. Hasancebi, N. and Ulusay, R. (2007). "Empirical Correlations Between Shear Wave Velocity and Penetration Resistance for Ground Shaking Assessments," Bull. Eng. Geol. Environ. 66, pp. 203-213. https://doi.org/10.1007/s10064-006-0063-0
  17. Hirany, A. and Kulhawy, F. H. (1989). "Interpretation of Load Tests on Drilled shafts I: Axial Compression". Foundation Engineering: Current Principles and Practices, GSP 22, Ed. F. H. Kulhawy, ASCE, New York: 1132-1149.
  18. Hoek, E. and Diederichs, M. S. (2006). "Empirical estimation of rock mass modulus". International Journal of Rock Mechanics and Mining Sciences, 43(2006), pp. 203-215, Elsevier. https://doi.org/10.1016/j.ijrmms.2005.06.005
  19. Hwang J. H., Li J. C. C., and Liang N. (2003). "On Methods for Interpreting Bearing Capacity from a Pile Load Test". Geotechnical Engineering, 34(1), pp. 27-39.
  20. Lam, T. S. K. and Johnston, I. W. (1982). "A Constant Normal Stiffness Direct Shear Machine". Proc. 7th S.E. Asian Conf. on Soil Eng., Hong Kong, 805-820.
  21. Mair, R. J. and Wood, D. M. (1987). "Pressuremeter Testing: methods and interpretation". CIRIA, UK.
  22. Mayne, P. W., Coop, M. R., Springman, S. M., Huang, A.- B., and Zornberg, J. G. (2009). "Geomaterial Behavior and Testing". Proc. 17th Int. Conf. Soil Mechs. Geot. Eng., Alexandria, Egypt, 4, pp. 2777-2872.
  23. Mayne, P. W. and Rix, G. J. (1993). "Gmax - qc relationships for clays". Geot. Testing Jnl., 16(1), pp. 54-60. https://doi.org/10.1520/GTJ10267J
  24. MELT (1993). "Regles techniques de conception et de calcul des fondations des ouvrages de genie civil". CCTG, Fascicule No. 62, Titre V, Min. de L'Equipement du Lodgement et des Transport, Paris.
  25. Merifield, R. S., Lyamin, A. V., and Sloan, S. W. (2006). "Limit analysis solutions for the bearing capacity of rock masses using the generalised Hoek-Brown criterion." Int. J. Rock Mechs. Min. Sciences, 43, pp. 920-937. https://doi.org/10.1016/j.ijrmms.2006.02.001
  26. Middendorp, P., Bermingham, P., and Kuiper, B. (1992). "Statnamic Load Testing of Foundation Piles". Proc. 4th Int. Conf. App. of Stress Wave Theory to Piles, the Hague, Balkema, Rotterdam, 581-588.
  27. Ooi, L. H. and Carter, J. P. (1987). "A Constant Normal Stiffness Direct Shear Device for Static and Cyclic Loading". Geot. Testing Jnl., ASTM, 10, pp. 3-12. https://doi.org/10.1520/GTJ10132J
  28. Osterberg, J. (1989). "New Device for Load Testing Driven and Drilled Shafts Separates Friction and End Bearing". Proc. Int. Conf. Piling and Deep Founds., London, 421-427.
  29. Poulos, H. G. (1988). "The Mechanics of Calcareous Sediments". John Jaeger Memorial Lecture, Aust. Geomechanics, Spec. Edition, 8-41.
  30. Poulos, H. G. (1989). "Pile Behaviour-Theory and Application". Geotechnique, 39(3), pp. 365-415. https://doi.org/10.1680/geot.1989.39.3.365
  31. Poulos, H. G. and Chua, E. W. (1985). "Bearing Capacity of Foundations oin Calcareous Sand". Proc. 11th Int. Conf. Soil Mechs. Found. Eng., San Francisco, 3, pp. 1619-1622.
  32. Poulos, H. G., Carter, J. P., and Small, J. C. (2001). "Foundations and Retaining Structures-Research and Practice". Proc. 15th Int. Conf. Soil Mechs. Geot. Eng., Istanbul, 4, pp. 2527-2606.
  33. Poulos, H. G., Small, J. C., and Chow, H. S. W. (2013). "Foundation Design for High-Rise Towers in Karstic Ground". ASCE GSP229, Foundation Engineering in the Face of Uncertainty, Ed. J. L. Withiam, K.-K. Phoon and M. H. Hussein, 720-731.
  34. Poulos, H. G. and Davids, A. J. (2005). "Foundation Design for the Emirates Twin Towers, Dubai". Can. Geot. Jnl. 42, pp. 716-730. https://doi.org/10.1139/t05-004
  35. Randolph, M. F. and Wroth, C. P. (1978). "Analysis of Deformation of Vertically Loaded Piles". Jnl. Geot. Eng., ASCE, 104(GT12), pp. 1465-1488.
  36. Rausche, F., Goble, G. G., and Likins, G. (1985). "Dynamic Determination of Pile Capacity". Jnl. Geot. Eng., ASCE, 111(3), pp. 367-383. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(367)
  37. Reese, L. C. and O'Neill, M. W. (1988). "Drilled Shafts: Construction Procedures and Design Methods". Pub. No. FHWA-H1-88-042, US Dept. Transportation.
  38. Terzaghi, K. (1943). "Theoretical Soil Mechanics". John Wiley, New York.
  39. Zhang, L. and Einstein, H. (1998). "End bearing capacity of drilled shafts in rock". Jnl. Geot. Eng., ASCE, 124(7), pp. 574-584.