Browse > Article
http://dx.doi.org/10.1007/s42649-019-0005-5

Dedicated preparation for in situ transmission electron microscope tensile testing of exfoliated graphene  

Kim, Kangsik (School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
Yoon, Jong Chan (School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
Kim, Jaemin (School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
Kim, Jung Hwa (School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
Lee, Suk Woo (School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
Yoon, Aram (School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
Lee, Zonghoon (School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
Publication Information
Applied Microscopy / v.49, no., 2019 , pp. 3.1-3.7 More about this Journal
Abstract
Graphene, which is one of the most promising materials for its state-of-the-art applications, has received extensive attention because of its superior mechanical properties. However, there is little experimental evidence related to the mechanical properties of graphene at the atomic level because of the challenges associated with transferring atomically-thin two-dimensional (2D) materials onto microelectromechanical systems (MEMS) devices. In this study, we show successful dry transfer with a gel material of a stable, clean, and free-standing exfoliated graphene film onto a push-to-pull (PTP) device, which is a MEMS device used for uniaxial tensile testing in in situ transmission electron microscopy (TEM). Through the results of optical microscopy, Raman spectroscopy, and TEM, we demonstrate high quality exfoliated graphene on the PTP device. Finally, the stress-strain results corresponding to propagating cracks in folded graphene were simultaneously obtained during the tensile tests in TEM. The zigzag and armchair edges of graphene confirmed that the fracture occurred in association with the hexagonal lattice structure of graphene while the tensile testing. In the wake of the results, we envision the dedicated preparation and in situ TEM tensile experiments advance the understanding of the relationship between the mechanical properties and structural characteristics of 2D materials.
Keywords
Exfoliated graphene; In situ TEM; Uniaxial tensile testing; Dry transfer; Crack propagation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Annett, G.L.W. Cross, Nature 535, 271 (2016).   DOI
2 L.G. Cancado et al., Nano Lett. 11, 3190 (2011).   DOI
3 C.H. Cao, B. Chen, T. Filleter, Y. Sun, Proc. IEEE Micr. Elect. 381-384 (2015).
4 C.H. Cao, J.Y. Howe, D. Perovic, T. Filleter, Y. Sun, Nanotechnology 27, 28LT01 (2016).   DOI
5 H. Chen, M.B. Muller, K.J. Gilmore, G.G. Wallace, D. Li, Adv. Mater. 20, 3557 (2008).   DOI
6 L.Y. Chen, M.R. He, J. Shin, G. Richter, D.S. Gianola, Nat. Mater. 14, 707 (2015).   DOI
7 M.F. El-Kady, R.B. Kaner, Nat. Commun. 4, 1475 (2013).   DOI
8 C. Gammer, J. Kacher, C. Czarnik, O.L. Warren, J. Ciston, A.M. Minor, Appl. Phys. Lett. 109, 081906 (2016).   DOI
9 A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007).   DOI
10 R. Bala, A. Marwaha, Eng. Sci. Technol. Int. J. 19, 531 (2016).   DOI
11 F. Guinea, M.I. Katsnelson, A.K. Geim, Nat. Phys. 6, 30 (2010).   DOI
12 J. Han, N.M. Pugno, S. Ryu, Nanoscale 7, 15672 (2015).   DOI
13 K. Kim, V.I. Artyukhov, W. Regan, Y.Y. Liu, M.F. Crommie, B.I. Yakobson, A. Zettl, Nano Lett. 12, 293 (2012).   DOI
14 K. Kim et al., Phys. Rev. B 83, 245433 (2011).   DOI
15 N.A. Kyeremateng, T. Brousse, D. Pech, Nat. Nano. 12, 7 (2017).   DOI
16 C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008).   DOI
17 G.H. Lee et al., Science 340, 1073 (2013).   DOI
18 N. Levy, S.A. Burke, K.L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A.H.C. Neto, M.F. Crommie, Science 329, 544 (2010).   DOI
19 F. Liu, P.M. Ming, J. Li, Phys. Rev. B 76, 064120 (2007).   DOI
20 Z. Liao et al., Sci. Rep. 7, 211 (2017).   DOI
21 Y.Y. Liu, A. Dobrinsky, B.I. Yakobson, Phys. Rev. Lett. 105, 235502 (2010).   DOI
22 M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C. A. Achete, A. Jorio, Carbon 48, 1592 (2010).   DOI
23 B. Mortazavi, G. Cuniberti, Nanotechnology 25, 215704 (2014).   DOI
24 A.E. Mag-isa, J.H. Kim, H.J. Lee, C.S. Oh, 2D Mater. 2, 034017 (2015).
25 J.C. Meyer et al., Nat. Mater. 10, 209 (2011).   DOI
26 K. Min, N.R. Aluru, Appl. Phys. Lett. 98, 013113 (2011).   DOI
27 H.Y. Nan, Z.H. Ni, J. Wang, Z. Zafar, Z.X. Shi, Y.Y. Wang, J. Raman Spectrosc. 44, 1018 (2013).   DOI
28 H. Li, J.M.T. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q.H. Zhang, H. Zhang, ACS Nano 7, 10344 (2013).   DOI
29 K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S. V. Dubonos, A.A. Firsov, Nature 438, 197 (2005).   DOI
30 K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004).   DOI
31 Y. Oh, E. Cyrankowski, Z. Shan, S.A.S. Asif, Google patents (2014).
32 Q.X. Pei, Y.W. Zhang, V.B. Shenoy, Carbon 48, 898 (2010).   DOI
33 F. Pizzocchero, L. Gammelgaard, B.S. Jessen, J.M. Caridad, L. Wang, J. Hone, P. Boggild, T.J. Booth, Nat. Commun. 7, 11894 (2016).   DOI
34 M.A. Rafiee, J. Rafiee, Z. Wang, H.H. Song, Z.Z. Yu, N. Koratkar, ACS Nano 3, 3884 (2009).   DOI
35 J.W. Suk, V. Mancevski, Y.F. Hao, K.M. Liechti, R.S. Ruoff, Phys. Status Solidi RRL 9, 564 (2015).   DOI
36 X.G. Wang, K. Chen, Y.Q. Zhang, J.C. Wan, O.L. Warren, J. Oh, J. Li, E. Ma, Z.W. Shan, Nano Lett. 15, 7886 (2015).   DOI
37 X. Zhao, Q.H. Zhang, D.J. Chen, P. Lu, Macromolecules 43, 2357 (2010)   DOI
38 P. Zhang et al., Nat. Commun. 5, 5167 (2014).   DOI
39 Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005).   DOI
40 Y.Y. Zhang, C.M. Wang, Y. Cheng, Y. Xiang, Carbon 49, 4511 (2011).   DOI
41 C. Si, Z. Liu, W. Duan, F. Liu, Phys. Rev. Lett. 111, 196802 (2013).   DOI
42 P. Venezuela, M. Lazzeri, F. Mauri, Phys. Rev. B 84, 035433 (2011).   DOI
43 F. Scarpa, S. Adhikari, A.S. Phani, Nanotechnology 20, 065709 (2009).   DOI