Browse > Article
http://dx.doi.org/10.7843/kgs.2020.36.9.45

Development of Triaxial Cells Operable with In Situ X-ray CT for Hydro-Mechanical Laboratory Testing of Rocks  

Zhuang, Li (Extreme Engrg. Research Center, Korea Institute of Civil Engrg. and Building Technology (KICT))
Yeom, Sun (Extreme Engrg. Research Center, KICT)
Shin, Hyu-Soung (Dept. of Future Tech. & Convergence Research, KICT)
Publication Information
Journal of the Korean Geotechnical Society / v.36, no.9, 2020 , pp. 45-55 More about this Journal
Abstract
X-ray computed tomography (CT) is very useful for the quantitative evaluation of internal structures, particularly defects in rock samples, such as pores and fractures. In situ CT allows 3D imaging of a sample subjected to various external treatments such as loading and therefore enables observation of changes that occur during the loading process. We reviewed state-of-the-art of in situ CT applications for geomaterials. Two triaxial cells made using relatively low density but high strength materials were developed aimed at in situ CT scanning during hydro-mechanical laboratory testing of rocks. Preliminary results for in situ CT imaging of granite and sandstone samples with diameters ranging from 25 mm to 50 mm show a resolution range of 34~105 ㎛ per pixel pitch, indicating the feasibility of in situ CT observations for internal structural changes in rocks at the micrometer scale. Potassium iodide solution was found to improve the image contrast, and can be used as an injection fluid for hydro-mechanical testing combined with in situ CT scanning.
Keywords
Fracture permeability; Hydraulic fracturing; In situ X-ray CT; KI solution; Triaxial cell;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Amirkhanov, A., Heinzl, C., Reiter, M., Kastner, J., and Groller, E. (2011), "Projection-based Metal-artifact Reduction for Industrial 3D X-ray Computed Tomography", IEEE Transactions on Visualization and Computer Graphics, Vol.17, pp.2193-2202.   DOI
2 ASTM (2011), "E1441-11 Standard guide for computed tomography (CT) imaging", American Society for Testing and Materials, West Conshohocken, PA.
3 Boas, F. E. and Fleischmann, D. (2012), "CT Artifacts: Causes and Reduction Techniques", Imaging in Medicine, Vol.4, No.2, pp.229-240.   DOI
4 Buljac, A., Jailin, C., Mendoza, A., Neggers, J., Taillandier-Thomas, T., Bouterf, A., Smaniotto, B., Hild, F., and Roux, S. (2018), "Digital Volume Correlation: Review of Progress and Challenges", Experimental Mechanics, Vol.58, pp.661-708.   DOI
5 Cnudde, V. and Boone, M. N. (2013), "High-resolution X-ray Computed Tomography in Geosciences: A Review of the Current Technology and Applications", Earth-Science Review, Vol.123, pp.1-17.   DOI
6 Deusner, C., Gupta, S., Kossel, E., Haeckel, M., Freise, M., Anbergen, H., and Wille, T. (2017), "Advanced Mechanical Testing of Gas Hydrate-bearing Sediments", Proceedings of the 19th International Conference on Soil and Geotechnical Engineering, Seoul, Sep 17-21.
7 Heindel, T. J. (2011), A Review of X-ray Flow Visualization with Applications to Multiphase Flows, Journals of Fluids Engineering, Transactions of the ASME, 133, 074001.
8 Hermanek P., Rathore J. S., Aloisi V., and Carmignato S. (2018), "Principles of X-ray Computed Tomography", In: Carmignato S., Dewulf W., Leach R. (eds) Industrial X-Ray Computed Tomography. Springer, Cham.
9 Hyun, S., Lee, J.S., Jeon, S., Kim, Y., Kim, K. Y., and Yun, T. S. (2019), "Pixel-level Crack Detection in X-ray Computed Tomography Image of Granite Using Deep Learning", Tunnel and Underground Space, Vol.29, No.3, pp.184-196.   DOI
10 Ju, Y., Xi, C., Zhang, Y., Mao, L., Gao, F., and Xie, H. (2018), "Laboratory in Situ CT Observation of the Evolution of 3D Fracture Networks In Coal Subjected to Confining Pressures and Axial Compressive Loads: A Novel Approach", Rock Mechanics and Rock Engineering, Vol.51, pp.3361-3375.   DOI
11 Ketcham, R. A. and Carlson, W. D. (2001), "Acquistion, Optimization and Interpretation of X-ray Computed Tomographic Imagery: Applications to the Geosciences", Computer & Geosciences, Vol. 27, pp.381-400.   DOI
12 Kim, K.Y., Zhuang, L., Yang, H., Kim, H., and Min, K. B. (2016), "Strength Anisotropy of Berea Sandstone: Results of X-ray Computed Tomography, Compression Tests, and Discrete Modeling", Rock Mechanics and Rock Engineering, Vol.49, pp.1201-1210.   DOI
13 Kling, T., Huo, D., Schwarz, J. O., Enzmann, F., Benson, S., and Blum, P. (2016), "Simulating Stress-dependent Fluid Flow in a Fractured Core Sample Using Real-time X-ray CT Data", Solid Earth, Vol.7, pp.1109-1124.   DOI
14 Lei, L., Seol, Y., and Jarvis, K. (2018), "Pore-scale Visualization of Methane Hydrate-bearing Sediments with Micro-CT", Geophysical Research Letters, Vol.45, pp.5417-5426.   DOI
15 LeiBner, T., Diener, A., Lower, E., Ditscherlein, R., Kruger, K., Kwade, A., and Peuker, U. A. (2020), "3D ex-situ and In-situ X-ray CT Process Studies in Particle Technology - A Perspective", Advanced Powder Technology, Vol.31, pp.78-86.   DOI
16 Lin, Q., Andrew, M., Thompson, W., Blunt, M. J., and Bijeljic, B. (2018), "Optimization of Image Quality and Acquisition Time for Lab-based X-ray Microtomography Using an Iterative Reconstruction Algorithm", Advances in Water Resources, Vol.115, pp.112-124.   DOI
17 Li, X., Duan, Y., Li, S., and Zhou, R. (2017), "Study on the Progressive Failure Characteristics of Longmaxi Shale under Uniaxial Compression Conditions by X-ray Micro-computed Tomography", Energies, Vol.10, No.303, doi:10.3390/en10030303.   DOI
18 Li, X., Li, S., He, J., He, P., and Shi, R. (2020), "In-situ Computed Tomography Technique in Geomechanical Testing", In: da Fontoura, S., Rocca, R.J., & Pavon Mendoza, J. (Eds.), Rock Mechanics for Natural Resources and Infrastructure Development, Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering (ISRM 2019), CRC Press, pp.80-102.
19 Lima, M. G., Vogler, D., Querci, L., Madonna, C., Hattendorf, B., Saar, M. O., and Kong, X. (2019), "Thermally Driven Fracture Aperture Variation in Naturally Fractured Granites", Geothermal Energy, Vol.7, No.23, https://doi.org/10.1186/s40517-019-0140-9.
20 Ohtani, T., Nakashima, Y., Nakano, T., and Muraoka, H. (2000), "X-ray CT Imaging of Pores and Fractures in the Kakkonda Granite, NE Japan", Proceedings World Geothermal Congress 2000, Beppu-Morioka, pp.1521-1526.
21 Peng, H., Zhao, Z., Chen, W., Chen, Y., Fang, J., and Li, B. (2020), "Thermal Effect on Permeability in a Single Granite Fracture: Experiment and Theoretical Model", International Journal of Rock Mechanics and Mining Sciences, Vol.131, https://doi.org/10.1016/j.ijrmms.2020.104358.
22 Renard, F., Bernard, D., Desrues, J., and Ougier-Simonin, A. (2009), "3D Imaging of Fracture Propagation Using Synchrotron X-ray Microtomography", Earth and Planetary Science Letters, Vol.286, pp.285-291.   DOI
23 Watanabe, N., Ishibashi, T., Hirano, N., and Tsuchiya, N. (2011), "Precise 3D Numerical Modeling of Fracture Flow Coupled with X-ray Computed Tomography for Reservoir Core Samples", SPE Journal, Vol.16, pp.683-691.   DOI
24 Shan, P. and Lai, X. (2019), "Influence of CT Scanning Parameters on Rock and Soil Images", Journal of Visual Communication and Image Representation, Vol.58, pp.642-650.   DOI
25 Shefer, E., Altman, A., Behling, R., Goshen, R., Gregorian, L., Roterman, Y., Uman, I., Wainer, N., Yagil, Y., and Zarchin, O. (2013), "State of the Art of CT Detectors and Sources: A Literature Review", Current Radiology Reports, Vol.1, pp.76-91.   DOI
26 Viggiani, G., Lenoir, N., Besuelle, P., Di Michiel, M., Marello, S., Desrues, J., and Kretzschmer, M. (2004), "X-ray Microtomography for Studying Localized Deformation in Fine-grained Geomaterials under Triaxial Compression", Comptes Rendus Mecanique, Vol.332, pp.819-826.   DOI
27 Watanabe, Y., Lenoir, N., Otani, J., and Nakai, T. (2012), "Displacement in Sand under Triaxial Compression by Tracking Soil Particles on X-ray CT Data", Soils and Foundations, Vol.52, No.2, pp. 312-320.   DOI
28 Yang, Z., Ren, W., Sharma, R., McDonald, S., Mostafavi, M., Vertyagina, Y., and Marrow, T. J. (2017), "In-situ X-ray Computed Tomography Characterisation of 3D Fracture Evolution and Image-based Numerical Homogenisation of Concrete", Cement and Concrete Composites, Vol.75, pp.74-83.   DOI
29 Yang, B., Xue, L., and Zhang, K. (2018), "X-ray Micro-computed Tomography Study of the Propagation of Cracks in Shale during Uniaxial Compression", Environment Earth Sciences, Vol.77, 652.
30 Zhao, Z. (2017), "Application of Discrete Element Approach in Fractured Rock Masses", In: Shojaei, A. K., and Shao, J. (eds) Porous Rock Fracture Mechanics: with Application to Hydraulic Fracturing, Drilling and Structural Engineering, pp.145-176.
31 Zhuang, L., Jung, S. G., Diaz, M., and Kim, K. Y. (2020a), "Laboratory Investigation on Hydraulic Fracturing of Granite Core Specimens", In: Shen, B., Stephansson, O., and Rinne, M. (Eds.), Modelling Rock Fracturing Processes - Theories, Methods, and Applications, Springer Nature Switzerland AG.
32 Zhuang, L., Kim, K. Y., Yeom, S., Jung, S. G., and Diaz, M. (2018a), "Preliminary Laboratory Study on Initiation and Propagation of Hydraulic Fractures in Granite Using X-ray Computed Tomography", International Conference on Geomechanics, Geo-energy and Geo-resources (IC3G2018), Sep 22-24, Chengdu.
33 Zhuang, L., Kim, K. Y., Jung, S. G., Diaz, M., Min, K. B., Park, S., Zang, A., Stephansson, O., Zimmermann, G., and Yoon, J. S. (2018b), "Cyclic Hydraulic Fracturing of Cubic Granite Samples under Triaxial Stress State with Acoustic Emission, Injectivity and Fracture Measurements", The 52nd U.S. Rock Mechanics/Geomechanics Symposium. Seattle, ARMA 18-297.
34 Zhuang, L., Kim, K. Y., Jung, S. G., Diaz, M., and Min, K. B. (2019), "Effect of Water Infiltration, Injection Rate and Anisotropy on Hydraulic Fracturing behavior of Granite", Rock Mechanics and Rock Engineering, Vol.52, pp.575-589.   DOI
35 Zhuang, L., Jung, S. G., Diaz, M., Kim, K. Y., Hofmann., H., Min, K. B., Zang, A., Stephansson, O., Zimmermann, G., and Yoon, J. S. (2020b), "Laboratory True Triaxial Hydraulic Fracturing of Granite under Six Fluid Injection Schemes and Grain-scale fracture observations", Rock Mechanics and Rock Engineering, https://doi.org/10.1007/s00603-020-02170-8.
36 Zimmerman, R. W. and Bodvarsson, G. S. (1996), "Hydraulic Conductivity of Rock Fractures", Transport in Porous Media, Vol.23, No.1, pp.1-30.   DOI