• Title/Summary/Keyword: improper prior

검색결과 65건 처리시간 0.017초

Bayesian Hypothesis Testing for Two Lognormal Variances with the Bayes Factors

  • Moon, Gyoung-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.1119-1128
    • /
    • 2005
  • The Bayes factors with improper noninformative priors are defined only up to arbitrary constants. So it is known that Bayes factors are not well defined due to this arbitrariness in Bayesian hypothesis testing and model selections. The intrinsic Bayes factor and the fractional Bayes factor have been used to overcome this problem. In this paper, we suggest a Bayesian hypothesis testing based on the intrinsic Bayes factor and the fractional Bayes factor for the comparison of two lognormal variances. Using the proposed two Bayes factors, we demonstrate our results with some examples.

  • PDF

A Bayesian Test Criterion for the Multivariate Behrens-Fisher Problem

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제28권1호
    • /
    • pp.107-124
    • /
    • 1999
  • An approximate Bayes criterion for multivariate Behrens-Fisher problem is proposed and examined. Development of the criterion involves derivation of approximate Bayes factor using the imaginary training sample approach introduced by Speigelhalter and Smith (1982). The criterion is designed to develop a Bayesian test, so that it provides an alternative test to other tests based upon asymptotic sampling theory (such as the tests suggested by Bennett(1951), James(1954) and Yao(1965). For the derived criterion, numerical studies demonstrate routine application and give comparisons with the classical tests.

  • PDF

Intrinsic Priors for Testing Two Normal Means with the Default Bayes Factors

  • Jongsig Bae;Kim, Hyunsoo;Kim, Seong W.
    • Journal of the Korean Statistical Society
    • /
    • 제29권4호
    • /
    • pp.443-454
    • /
    • 2000
  • In Bayesian model selection or testing problems of different dimensions, the conventional Bayes factors with improper noninformative priors are not well defined. The intrinsic Bayes factor and the fractional Bayes factor are used to overcome such problems by using a data-splitting idea and fraction, respectively. This article addresses a Bayesian testing for the comparison of two normal means with unknown variance. We derive proper intrinsic priors, whose Bayes factors are asymptotically equivalent to the corresponding fractional Bayes factor. We demonstrate our results with two examples.

  • PDF

Default Bayesian testing for the bivariate normal correlation coefficient

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권5호
    • /
    • pp.1007-1016
    • /
    • 2011
  • This article deals with the problem of testing for the correlation coefficient in the bivariate normal distribution. We propose Bayesian hypothesis testing procedures for the bivariate normal correlation coefficient under the noninformative prior. The noninformative priors are usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. A simulation study and an example are provided.

Default Bayesian testing equality of scale parameters in several inverse Gaussian distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권3호
    • /
    • pp.739-748
    • /
    • 2015
  • This paper deals with the problem of testing about the equality of the scale parameters in several inverse Gaussian distributions. We propose default Bayesian testing procedures for the equality of the shape parameters under the reference priors. The reference prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. Therefore we propose the default Bayesian testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Default Bayesian hypothesis testing for the scale parameters in the half logistic distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권2호
    • /
    • pp.465-472
    • /
    • 2014
  • This article deals with the problem of testing the equality of the scale parameters in the half logistic distributions. We propose Bayesian hypothesis testing procedures for the equality of the scale parameters under the noninformative priors. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be dened up to a multiplicative constant. Thus we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Default Bayesian one sided testing for the shape parameter in the log-logistic distribution

  • Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1583-1592
    • /
    • 2015
  • This paper deals with the problem of testing on the shape parameter in the log-logistic distribution. We propose default Bayesian testing procedures for the shape parameter under the reference priors. The reference prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. We can solve the this problem by the intrinsic Bayes factor and the fractional Bayes factor. Therefore we propose the default Bayesian testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Default Bayesian testing for scale parameters in the log-logistic distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1501-1511
    • /
    • 2015
  • This paper deals with the problem of testing on the equality of the scale parameters in the log-logistic distributions. We propose default Bayesian testing procedures for the scale parameters under the reference priors. The reference prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. Therefore, we propose the default Bayesian testing procedures based on the fractional Bayes factor and the intrinsic Bayes factor under the reference priors. To justify proposed procedures, a simulation study is provided and also, an example is given.

Default Bayesian testing for the scale parameters in two parameter exponential distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권4호
    • /
    • pp.949-957
    • /
    • 2013
  • In this paper, we consider the problem of testing the equality of the scale parameters in two parameter exponential distributions. We propose Bayesian testing procedures for the equality of the scale parameters under the noninformative priors. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. Thus, we propose the default Bayesian testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

시뮬레이션을 통한 베이즈요인에 의한 모형선택의 비교연구 : 포아송, 음이항모형의 선택과 정규, 이중지수, 코쉬모형의 선택 (Comparative Study of Model Selection Using Bayes Factor through Simulation : Poisson vs. Negative Binomial Model Selection and Normal, Double Exponential vs. Cauchy Model Selection)

  • 오미라;윤소영;심정욱;손영숙
    • 응용통계연구
    • /
    • 제16권2호
    • /
    • pp.335-349
    • /
    • 2003
  • 본 논문에서는 포아송분포 대 음이항분포, 그리고 정규분포, 이중지 수분포 대 코쉬분포에 대한 모형선택을 위하여 베이지안 방법을 사용한다. 각 모수에 대한 사전분포로는 무정보 부적절 사전분포의 가정 하에, 베이지안 모형선택을 위하여 O'Hagan (1995)의 부분적 베 이즈요인을 이용하였다. 실제자료와 모의 실험 자료의 분석을 통하여 부분적 베이즈요인의 유용성을 Berger와 Pericchi (1996, 1998)의 내재적 베이즈요인들과 함께 비교 검토해 본다.