
Journal of the Korean Data & http://dx.doi.org/10.7465/jkdi.2015.26.3.739
Information Science Society 한국데이터정보과학회지
2015, 26(3), 739–748

Default Bayesian testing equality of scale parameters in
several inverse Gaussian distributions

Sang Gil Kang1 · Dal Ho Kim2 · Woo Dong Lee3

1Department of Computer and Data Information, Sangji University
2Department of Statistics, Kyungpook National University

3Department of Data Management, Daegu Haany University

Received 26 February 2015, revised 18 March 2015, accepted 20 April 2015

Abstract

This paper deals with the problem of testing about the equality of the scale param-
eters in several inverse Gaussian distributions. We propose default Bayesian testing
procedures for the equality of the shape parameters under the reference priors. The
reference prior is usually improper which yields a calibration problem that makes the
Bayes factor to be defined up to a multiplicative constant. Therefore we propose the
default Bayesian testing procedures based on the fractional Bayes factor and the in-
trinsic Bayes factors under the reference priors. Simulation study and an example are
provided.

Keywords: Fractional Bayes factor, intrinsic Bayes factor, inverse Gaussian distribution,
reference prior, scale parameter.

1. Introduction

The probability density function of the inverse Gaussian distribution with mean parameter
µ and the scale parameter λ is defined by

f(x|λ, µ) =

√
λ

2π
x−

3
2 exp

{
−λ(x− µ)2

2µ2x

}
, x > 0, µ > 0, λ > 0. (1.1)

Because of the versatility and flexibility in modelling right-skewed data, the inverse Gaussian
distribution has potentially useful applications in a wide variety of fields such as biology,
economics, reliability theory and life testing as discussed in Chhikara and Folks (1989) and
Seshadri (1999).

The present paper focuses on testing the equality of the scale parameters in several inverse
Gaussian distributions. This equality test is important because the well-known analysis
of reciprocals F -test is based on the assumption of equality of scale parameters. That is,
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when the equality of the scale parameters is not guaranteed, this F -test may give a wrong
conclusion.

Without the homogeneity of the scale parameter assumption, Tian (2006) developed a
generalized p-value based test procedure for the equality of several inverse Gaussian means.
Krishnamoorthy and Tian (2008) further used generalized p-value based test to make an
inference on the difference and ratio of two independent inverse Gaussian means. Subse-
quently, a parametric bootstrap approach for testing equality of several inverse Gaussian
means under heterogeneity was applied by Ma and Tian (2009). When the means of sev-
eral inverse Gaussian distributions are the same, Ye et al. (2010) suggested the generalized
inference-based tests associated with the large-sample theory, to perform statistical inference
for the common mean without assuming the scalar parameters are known and equal.

For testing the equality of the scale parameters, there are several relevant proposals
available in the literature. Chang et al. (2012) developed a test using the generalized p-
value. Sadooghi-Alvandi and Malekzadeh (2013) proposed an exact likelihood-ratio test,
and showed that the proposed test is more powerful than the test proposed by Chang et
al. (2012) by simulation study. Liu and He (2013) developed the generalized test variables
for testing the equality of inverse Gaussian scale parameters based on generalized likelihood
ratio. But there is no result for this test based on Bayesian hypothesis testing procedure.

In Bayesian model selection or testing, the posterior probabilities of models or hypotheses
are computed using the Bayes factor. And then the model which has the highest posterior
probability is selected. In this sense, the Bayes factor plays an important role in Bayesian
model selection.

The use of objective priors like Jeffreys’ prior or reference prior of Berger and Bernardo
(1989, 1992) has been very popular in Bayesian inference. The Bayesian inference using
objective priors has many advantages over the Bayesian inference based on subjective priors.
At least, the inference based on objective priors does not need to study about the influences
of hyper parameter. But the objective priors or noninformative priors such as Jeffreys’ or
reference prior are typically improper.

It is well known that the Bayes factor under the improper prior contains arbitrary constants
and these constants affect the values of the Bayes factor. And this fact causes a serious
problem in Bayesian model selection. To overcome this problem, Spiegelhalter and Smith
(1982), O’Hagan (1995) and Berger and Pericchi (1996) have made efforts to compensate
for that arbitrariness.

Spiegelhalter and Smith (1982) used the idea of imaginary training sample to choose the
arbitrary constants. Berger and Pericchi (1996) introduced the intrinsic Bayes factor using
a data-splitting idea, which would eliminate the arbitrariness of improper prior. O’Hagan
(1995) proposed the fractional Bayes factor. For removing the arbitrariness he used to a
fraction of the likelihood. An excellent exposition of the objective Bayesian method to model
selection is Berger and Pericchi (2001). The last two approaches of intrinsic Bayes factor and
fractional Bayes factor have shown to be quite useful in many statistical inference (Kang et
al., (2013, 2014)).

In this paper, we propose the objective Bayesian hypothesis testing procedures for the
equality of the scale parameters in several inverse Gaussian distributions based on the Bayes
factors. The outline of the remaining sections is as follows. In Section 2, we introduce the
Bayesian hypothesis testing based on the Bayes factors. In Section 3, under the reference
prior, we provide the Bayesian hypothesis testing procedures based on the fractional Bayes
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factor and the intrinsic Bayes factors. In Section 4, simulation study and an example are
given.

2. Intrinsic and fractional Bayes factors

Suppose that hypotheses H1, H2,· · · , Hq are under consideration, with the data x =
(x1, x2, · · · , xn) having probability density function fi(x|θi) under hypothesis Hi. The pa-
rameter vector θi is unknown. Let πi(θi) be the prior distributions of hypothesis Hi, and let
pi be the prior probability of hypothesis Hi, i = 1, 2, · · · , q . Then the posterior probability
that the hypothesis Hi is true is

P (Hi|x) =

 q∑
j=1

pj
pi
·Bji

−1

, (2.1)

where Bji is the Bayes factor of hypothesis Hj to hypothesis Hi defined by

Bji =

∫
fj(x|θj)πj(θj)dθj∫
fi(x|θi)πi(θi)dθi

=
mj(x)

mi(x)
. (2.2)

The Bji interpreted as the comparative support of the data for Hj versus Hi. The compu-
tation of Bji needs specification of the prior distribution πi(θi) and πj(θj).

Consider the noninformative prior πN
i for the prior distribution of θi which is improper.

Then the use of noninformative prior πN
i in (2.2) causes the Bji to contain unspecified

constants of the scales of πN
i and πN

j .
The idea of Berger and Perricchi (1996) is to use part of the data as a training sample

x(l) which satisfies
0 < mN

i (x(l)) <∞, i = 1, · · · , q, (2.3)

and denote x(−l) as the remainder of the data.
In view (2.3), the posteriors πN

i (θi|x(l)) are well defined. Now, consider the Bayes factor
Bji(l) with the remainder of the data x(−l) using πN

i (θi|x(l)) as the priors:

Bji(l) =

∫
f(x(−l)|θj ,x(l))πN

j (θj |x(l))dθj∫
f(x(−l)|θi,x(l))πN

i (θi|x(l))dθi
= BN

ji ·BN
ij (x(l)) (2.4)

where

BN
ji = BN

ji (x) =
mN

j (x)

mN
i (x)

and

BN
ij (x(l)) =

mN
i (x(l))

mN
j (x(l))

are the Bayes factors that would be obtained for the full data x and training samples x(l),
respectively. It is clear that the arbitrary constants are cancelling out in (2.4).

Berger and Pericchi (1996) proposed the use of a minimal training sample to compute
BN

ij (x(l)). A minimal training sample satisfies (2.3) with the property that no subset of the
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minimal training sample is proper. Then, an average over all the possible minimal training
samples contained in the sample is computed. Thus the arithmetic intrinsic Bayes factor
(AIBF) of Hj to Hi is

BAI
ji = BN

ji ×
1

L

L∑
l=1

BN
ij (x(l)), (2.5)

where L is the number of all possible minimal training samples. Also the median intrinsic
Bayes factor (MIBF) by Berger and Pericchi (1998) of Hj to Hi is

BMI
ji = BN

ji ×ME[BN
ij (x(l))], (2.6)

where ME indicates the median for all the training sample Bayes factors.
Therefore we can also calculate the posterior probability of Hi using (2.1), where Bji is

replaced by BAI
ji and BMI

ji of (2.5) and (2.6), respectively.
The fractional Bayes factor (O’Hagan, 1995) is based on a similar intuition to that behind

the intrinsic Bayes factor but, instead of using part of the data to turn noninformative priors
into proper priors, it uses a fraction, b, of each likelihood function, L(θi) = fi(x|θi), with the
remaining 1− b fraction of the likelihood used for model discrimination. Then the fractional
Bayes factor (FBF) of hypothesis Hj versus hypothesis Hi is

BF
ji = BN

ji ·
∫
Lb(x|θi)πN

i (θi)dθi∫
Lb(x|θj)πN

j (θj)dθj
= BN

ji ·
mb

i (x)

mb
j(x)

. (2.7)

O’Hagan (1995) proposed three ways for the choice of the fraction b. One common choice of
b is b = m/n, where m is the size of the minimal training sample, assuming that this number
is uniquely defined. See O’Hagan (1995, 1997) and the discussion by Berger and Mortera in
O’Hagan (1995).

3. Bayesian hypothesis testing procedures

Let xij , i = 1, · · · , k, j = 1, · · · , ni denote observations from inverse Gaussian distribution
with the scale parameter λi and the mean parameter µi. Then likelihood function is given
by

f(x|λ1, · · · , λk, µ1, · · · , µk)

= (2π)−
n
2

 k∏
i=1

ni∏
j=1

x
− 3

2
ij

( k∏
i=1

λ
ni
2
i

)
exp{−

k∑
i=1

ni∑
j=1

λi(xij − µi)
2

2µ2
ixij

}, (3.1)

where x = (x1, · · · ,xk) and xi = (xi1, · · · , xini) and n = n1 + · · ·+nk. We are interested in
testing the hypotheses H1 : λ1 = · · · = λk versus H2 : λ1 6= · · · 6= λk based on the fractional
Bayes factor and the intrinsic Bayes factors.

3.1. Bayesian hypothesis testing procedure based on the fractional Bayes factor

From (3.1) the likelihood function under the hypothesis H1 : λ1 = · · · = λk ≡ λ is

L1(λ, µ1, · · · , µk|x) = (2π)−
n
2

 k∏
i=1

ni∏
j=1

x
− 3

2
ij

λ
n
2 exp{−

k∑
i=1

ni∑
j=1

λ(xij − µi)
2

2µ2
ixij

}. (3.2)
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And under the hypothesis H1, the reference prior for (λ, µ1, · · · , µk) can be obtained directly
from the Fisher information by Chhikara and Folks (1989) and is given as follows.

πN
1 (λ, µ1, · · · , µk) ∝ λ−1µ

− 3
2

1 · · ·µ−
3
2

k . (3.3)

Then from the likelihood (3.2) and the reference prior (3.3), the element mb
1(x) of the FBF

under H1 is given by

mb
1(x) =

∫ ∞
0

∫ ∞
0

· · ·
∫ ∞

0

Lb
1(λ, µ1, · · · , µk|x)πN

1 (λ, µ1, · · · , µk)dλdµ1 · · · dµk

=

∫ ∞
0

∫ ∞
0

· · ·
∫ ∞

0

(2π)−
bn
2

 k∏
i=1

ni∏
j=1

x
− 3b

2
ij

( k∏
i=1

µ
− 3

2
i

)
λ

bn
2 −1

× exp

−
k∑

i=1

ni∑
j=1

bλ(xij − µi)
2

2µ2
ixij

 dλdµ1 · · · dµk

= (2π)−
bn
2

 k∏
i=1

ni∏
j=1

x
− 3b

2
ij

Γ

[
bn

2

]

×
∫ ∞

0

· · ·
∫ ∞

0

(
k∏

i=1

µ
− 3

2
i

)[
k∑

i=1

b

2

(
si+

ni(x̄i − µi)
2

µ2
i x̄i

)]
− bn

2 dµ1 · · · dµk, (3.4)

where x̄i =
∑ni

j=1 xij/ni and si =
∑ni

j=1( 1
xij
− 1

x̄i
). For the hypothesis H2, the reference

prior for (λ1, · · · , λk, µ1, · · · , µk) is

πN (λ1, · · · , λk, µ1, · · · , µk) ∝
k∏

i=1

λ−1
i µ

− 3
2

i . (3.5)

This reference prior can be obtained directly from the Fisher information by Chhikara and
Folks (1989). The likelihood function under the hypothesis H2 is given by equation (3.1).
Thus from the likelihood (3.1) and the reference prior (3.5), the element mb

2(x) of FBF under
H2 is given as follows.

mb
2(x) =

∫ ∞
0

· · ·
∫ ∞

0

∫ ∞
0

· · ·
∫ ∞

0

Lb
2(λ1, · · · , λk, µ1, · · · , µk|x)

× πN
2 (λ1, · · · , λk, µ1, · · · , µk)dλ1 · · · dλkdµ1 · · · dµk

=

∫ ∞
0

· · ·
∫ ∞

0

∫ ∞
0

· · ·
∫ ∞

0

(2π)−
bn
2

 k∏
i=1

ni∏
j=1

x
− 3b

2
ij

( k∏
i=1

λ
bni
2 −1

i µ
− 3

2
i

)

× exp{−
k∑

i=1

ni∑
j=1

λi(xij − µi)
2

2µ2
ixij

}dη1 · · · dηkdµ1 · · · dµk (3.6)

= (2π)−
bn
2

 k∏
i=1

ni∏
j=1

x
− 3b

2
ij

 k∏
i=1

Γ

[
bni
2

] ∫ ∞
0

µ
− 3

2
i

[
b

2

(
si+

ni(x̄i − µi)
2

µ2
i x̄i

)]− bni
2

dµi.
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Therefore the element BN
21 of FBF is given by

BN
21 =

∏k
i=1 Γ[ni

2 ]S2i(x)

Γ[n2 ]S1(x)
, (3.7)

where

S1(x) =

∫ ∞
0

· · ·
∫ ∞

0

(
k∏

i=1

µ
− 3

2
i

)[
k∑

i=1

(
si +

ni(x̄i − µi)
2

µ2
i x̄i

)]−n
2

dµ1 · · · dµk

and

S2i(x) =

∫ ∞
0

µ
− 3

2
i

[(
si +

ni(x̄i − µi)
2

µ2
i x̄i

)]−ni
2

dµi.

And the ratio of marginal densities with fraction b is

mb
1(x)

mb
2(x)

=
Γ[ bn2 ]S1(x; b)∏k

i=1 Γ[ bni

2 ]S2i(x; b)
, (3.8)

where

S1(x; b) =

∫ ∞
0

· · ·
∫ ∞

0

(
k∏

i=1

µ
− 3

2
i

)[
k∑

i=1

(
si +

ni(x̄i − µi)
2

µ2
i x̄i

)]− bn
2

dµ1 · · · dµk

and

S2i(x; b) =

∫ ∞
0

µ
− 3

2
i

[(
si +

ni(x̄i − µi)
2

µ2
i x̄i

)]− bni
2

dµi.

Thus the FBF of H2 versus H1 is given by

BF
21 =

Γ[ bn2 ]

Γ[n2 ]

S1(x; b)

S1(x)

∏k
i=1 Γ[ni

2 ]S2i(x)∏k
i=1 Γ[ bni

2 ]S2i(x; b)
. (3.9)

Note that the calculations of the FBF of H2 versus H1 require actually two dimensional
integration.

3.2. Bayesian hypothesis testing procedure based on the intrinsic Bayes factor

The element BN
21 of the intrinsic Bayes factor is already computed in the fractional Bayes

factor. So under minimal training sample, we only calculate the marginal densities for the
hypotheses H1 and H2, respectively. The marginal densities of (X1i1 , X1i2 , · · · , Xki1 , Xki2)
are finite for all (i1 < i2) ∈ {1, 2, · · · , ni}, i = 1, · · · , k under each hypothesis. Thus we
conclude that any training sample of size 2 from each population is a minimal training
sample.
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The marginal density mN
1 (x1i1 , x1i2 , · · · , xki1 , xki2) under H1 is given by

mN
1 (x1i1 , x1i2 , · · · , xki1 , xki2)

=

∫ ∞
0

∫ ∞
0

· · ·
∫ ∞

0

f(x1i1 , x1i2 , · · · , xki1 , xki2 |λ, µ1, · · · , µk)

× πN
1 (λ, µ1, · · · , µk)dλdµ1 · · · dµk

= (2π)−k

 k∏
i=1

2∏
j=1

x
− 3

2
iij

Γ[k]

×
∫ ∞

0

· · ·
∫ ∞

0

(
k∏

i=1

µ
− 3

2
i

)[
k∑

i=1

1

2

(
wi +

(xii1 + xii2 − 2µi)
2

µ2
i (xii1 + xii2)

)]−k
dµ1 · · · dµk,

where wi = (xii1 + xii2)/2. And the marginal density mN
2 (x1i1 , x1i2 , · · · , xki1 , xki2) under

H2 is given by

mN
2 (x1i1 , x1i2 , · · · , xki1 , xki2)

=

∫ ∞
0

· · ·
∫ ∞

0

∫ ∞
0

· · ·
∫ ∞

0

f(x1i1 , x1i2 , · · · , xki1 , xki2 |λ1, · · · , λk, µ1, · · · , µk)

× πN
2 (λ1, · · · , λk, µ1, · · · , µk)dλ1 · · · dλkdµ1 · · · dµk

= (2π)−k

 k∏
i=1

2∏
j=1

x
− 3

2
iij

∫ ∞
0

µ
− 3

2
i

[
1

2

(
wi +

ni(xii1 + xii2 − 2µi)
2

µ2
i (xii1 + xii2)

)]−1

dµi.

Therefore the AIBF of H2 versus H1 is given by

BAI
21 (3.10)

=

∏k
i=1 Γ[ni

2 ]S2i(x)

Γ[n2 ]S1(x)

 1

L

n1∑
(i1<i2)∈{1,··· ,n1}

· · ·
nk∑

(i1<i2)∈{1,··· ,nk}

T1(x1i1 , x1i2 ,· · ·, xki1 , xki2)

T2(x1i1 , x1i2 ,· · ·, xki1 , xki2)

 ,
where L =

∏k
i=1 ni(ni − 1)/2,

T1(x1i1 , x1i2 , · · · , xki1 , xki2)

= Γ[k]

∫ ∞
0

· · ·
∫ ∞

0

(
k∏

i=1

µ
− 3

2
i

)[
k∑

i=1

1

2

(
wi +

(xii1 + xii2 − 2µi)
2

µ2
i (xii1 + xii2)

)]−k
dµ1 · · · dµk,

and

T2(x1i1 , x1i2 , · · · , xki1 , xki2)

=

k∏
i=1

∫ ∞
0

µ
− 3

2
i

[
1

2

(
wi +

ni(xii1 + xii2 − 2µi)
2

µ2
i (xii1 + xii2)

)]−1

dµi.

Also the MIBF of H2 versus H1 is given by

BMI
21 =

∏k
i=1 Γ[ni

2 ]S2i(x)

Γ[n2 ]S1(x)
ME

[
T1(x1i1 , x1i2 , · · · , xki1 , xki2)

T2(x1i1 , x1i2 , · · · , xki1 , xki2)

]
. (3.11)

Note that the calculations of the AIBF and the MIBF of H2 versus H1 require actually two
dimensional integration.
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4. Numerical studies

In order to assess the Bayesian hypothesis testing procedures, we evaluate the posterior
probability for several configurations of (λ1, µ1), · · · , (λk, µk) and (n1, · · · , nk). In particular,
for fixed (λi, µi), i = 1, · · · , k, we take 200 independent random samples of Xi with sample
sizes ni from the inverse Gaussian distributions with (λi, µi), respectively. We want to test
the hypotheses H1 : λ1 = · · · = λk versus H2 : λ1 6= · · · 6= λk. The posterior probabilities
of H1 being true are computed assuming equal prior probabilities. For this simulation,
FORTRAN equipped with IMSL subroutine is used. To compute the integration in the
Bayes Factors, the IMSL subroutine GQRUL/DGQRUL is used.

Tables 4.1 shows the results of the averages and the standard deviations in parentheses of
posterior probabilities. In Table 4.1, PF (·), PAI(·) and PMI(·) are the posterior probabilities
of the hypothesis H1 being true based on FBF, AIBF and MIBF, respectively. From Table
4.1, the FBF, the AIBF and the MIBF accept the hypothesis H1 when the values of λ2 and
λ3 are close to values of λ1, whereas reject the hypothesis H1 when the values of λ2 and
λ3 are far from values of λ1. Also the AIBF and the MIBF give a similar behavior for all
sample sizes. However the FBF favors the hypothesis H2 than the AIBF and the MIBF.

Table 4.1 The averages and the standard deviations in parentheses of posterior probabilities

µ1, µ2, µ3 λ1, λ2, λ3 n1, n2, n3 PF (H1|x) PAI (H1|x) PMI (H1|x)

1.0, 1.0, 1.0

1.0, 1.0, 1.0
5, 5, 5 0.598 (0.169) 0.725 (0.184) 0.745 (0.172)

5, 10, 10 0.722 (0.164) 0.818 (0.153) 0.832 (0.147)
10, 10, 10 0.726 (0.168) 0.844 (0.147) 0.857 (0.141)

1.0, 1.5, 2.0
5, 5, 5 0.568 (0.181) 0.697 (0.198) 0.719 (0.185)

5, 10, 10 0.664 (0.218) 0.755 (0.222) 0.773 (0.212)
10, 10, 10 0.624 (0.246) 0.750 (0.239) 0.767 (0.230)

1.0, 2.0, 3.0
5, 5, 5 0.514 (0.193) 0.637 (0.220) 0.662 (0.214)

5, 10, 10 0.571 (0.254) 0.661 (0.268) 0.683 (0.261)
10, 10, 10 0.522 (0.272) 0.649 (0.293) 0.668 (0.289)

1.0, 3.0, 5.0
5, 5, 5 0.459 (0.221) 0.574 (0.262) 0.602 (0.256)

5, 10, 10 0.441 (0.300) 0.511 (0.331) 0.531 (0.329)
10, 10, 10 0.308 (0.291) 0.405 (0.341) 0.424 (0.343)

1.0, 5.0, 10.0
5, 5, 5 0.304 (0.234) 0.380 (0.287) 0.406 (0.288)

5, 10, 10 0.267 (0.299) 0.305 (0.332) 0.321 (0.335)
10, 10, 10 0.104 (0.169) 0.152 (0.223) 0.165 (0.232)

1.0, 3.0, 5.0

1.0, 1.0, 1.0
5, 5, 5 0.613 (0.163) 0.740 (0.178) 0.766 (0.163)

5, 10, 10 0.721 (0.171) 0.819 (0.158) 0.838 (0.145)
10, 10, 10 0.731 (0.154) 0.851 (0.129) 0.867 (0.120)

1.0, 1.5, 2.0
5, 5, 5 0.594 (0.173) 0.713 (0.194) 0.740 (0.176)

5, 10, 10 0.649 (0.221) 0.739 (0.225) 0.767 (0.209)
10, 10, 10 0.671 (0.219) 0.789 (0.210) 0.811 (0.196)

1.0, 2.0, 3.0
5, 5, 5 0.518 (0.205) 0.630 (0.241) 0.664 (0.228)

5, 10, 10 0.585 (0.241) 0.674 (0.258) 0.707 (0.247)
10, 10, 10 0.513 (0.288) 0.627 (0.303) 0.656 (0.293)

1.0, 3.0, 5.0
5, 5, 5 0.439 (0.226) 0.533 (0.276) 0.576 (0.266)

5, 10, 10 0.481 (0.289) 0.550 (0.316) 0.584 (0.307)
10, 10, 10 0.329 (0.280) 0.424 (0.326) 0.455 (0.329)

1.0, 5.0, 10.0
5, 5, 5 0.284 (0.230) 0.341 (0.284) 0.386 (0.286)

5, 10, 10 0.260 (0.273) 0.300 (0.310) 0.332 (0.316)
10, 10, 10 0.110 (0.190) 0.149 (0.239) 0.165 (0.249)

1.0, 5.0, 10.0

1.0, 1.0, 1.0
5, 5, 5 0.624 (0.157) 0.748 (0.174) 0.775 (0.157)

5, 10, 10 0.700 (0.185) 0.796 (0.184) 0.817 (0.170)
10, 10, 10 0.751 (0.149) 0.864 (0.124) 0.880 (0.113)

1.0, 1.5, 2.0
5, 5, 5 0.556 (0.189) 0.673 (0.218) 0.705 (0.205)

5, 10, 10 0.687 (0.194) 0.779 (0.193) 0.805 (0.178)
10, 10, 10 0.659 (0.231) 0.774 (0.228) 0.797 (0.215)

1.0, 2.0, 3.0
5, 5, 5 0.523 (0.197) 0.632 (0.233) 0.672 (0.219)

5, 10, 10 0.617 (0.240) 0.698 (0.255) 0.728 (0.241)
10, 10, 10 0.528 (0.255) 0.649 (0.273) 0.680 (0.265)

1.0, 3.0, 5.0
5, 5, 5 0.441 (0.226) 0.532 (0.275) 0.575 (0.266)

5, 10, 10 0.472 (0.287) 0.537 (0.315) 0.578 (0.307)
10, 10, 10 0.346 (0.281) 0.438 (0.321) 0.474 (0.321)

1.0, 5.0, 10.0
5, 5, 5 0.327 (0.222) 0.384 (0.277) 0.435 (0.273)

5, 10, 10 0.297 (0.289) 0.335 (0.323) 0.367 (0.329)
10, 10, 10 0.144 (0.207) 0.192 (0.259) 0.217 (0.273)
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Example 4.1 This example is taken from Liu and He (2013). This data set can be obtained
from http://lib.stat.cmu.edu/DASL/Large Datafiles/Crash.data, originally provided by the
National Transportation Safety Administration. Tian (2006) used a part of this data set
to test equality of means of inverse Gaussian distributions under possible heterogeneity.
Here, we also used the data to test homogeneity of the scale parameters of inverse Gaussian
distributions. According to Tian’s (2006) description, we consider the problem of comparing
the crash injuries between three car makes-Dodge, Honda, and Hyundai. There are eight,
seven, and five observations for these three car makes, respectively. For illustrating the
proposed method, we only take one of the injury variable, that is, left femur load as an
example. Mudholkar and Tian (2002) used the entropy goodness-of-fit test to show that the
variable can be reasonably described by inverse Gaussian distribution.

The summary statistics of this data set are: n1 = 8, n2 = 7, n3 = 5, x̄1 = 8.578, x̄2 = 8.053,
x̄3 = 15.968, s1 = 0.203, s2 = 0.150, s3 = 0.082. For this data set, the p-values by the
generalized likelihood ratio test of Liu and He (2013) and the approximate χ2 test are 0.903
and 0.932, respectively. Therefore, there is no obvious evidence to reject the common scale
parameter.

We want to test the hypotheses H1 : λ1 = λ2 = λ3 versus H2 : λ1 6= λ2 6= λ3. The values
of the Bayes factors and the posterior probabilities of H1 are given in Table 4.2. From the
results of Table 4.2, the posterior probabilities based on various Bayes factors give the same
answer, and all Bayes factor select the hypothesis H1. And the AIBF and the MIBF slightly
seem to favor the simple hypothesis.

Table 4.2 Bayes factor and posterior probabilities of H1 : λ1 = λ2 = λ3

BF21 PF (H1|x) BAI21 PAI(H1|x) BMI
21 PMI(H1|x)

0.212 0.825 0.092 0.915 0.087 0.920

5. Concluding remarks

In this paper, we developed the objective Bayesian hypothesis testing procedures based
on the fractional Bayes factor and the intrinsic Bayes factors for the equality of the scale
parameters in several inverse Gaussian distributions under the reference priors. From our
numerical results, the developed hypothesis testing procedures give fairly reasonable answers
for all parameter configurations. However the FBF favors the hypothesis H2 than the AIBF
and the MIBF. From our simulation and example, we recommend the use of the FBF than the
AIBF and MIBF for practical application in view of its simplicity and ease of implementation.
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