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Abstract

This paper deals with the problem of testing on the shape parameter in the log-
logistic distribution. We propose default Bayesian testing procedures for the shape
parameter under the reference priors. The reference prior is usually improper which
yields a calibration problem that makes the Bayes factor to be defined up to a multi-
plicative constant. We can solve the this problem by the intrinsic Bayes factor and the
fractional Bayes factor. Therefore we propose the default Bayesian testing procedures
based on the fractional Bayes factor and the intrinsic Bayes factors under the reference
priors. Simulation study and an example are provided.

Keywords: Fractional Bayes factor, intrinsic Bayes factor, log-logistic distribution, ref-
erence prior.

1. Introduction

The log-logistic distribution is well known in survival analysis of data sets such as survival
times of cancer patients in which the hazard increases initially and decreases later (Bennett,
1983). Also in economic studies of distributions of wealth or income, it is known as Fisk
distribution (Fisk, 1961) and is considered as an equivalent alternative to a log-normal
distribution. The density function of the log-logistic distribution is given by

f(x|α, β) =
βαβxβ−1

(αβ + xβ)2
, x > 0, α > 0, β > 0, (1.1)

where α is the scale parameter and β is the shape parameter.
The failure rate function of the log-logistic distribution can be decreasing or upside-down

bath tub, depending on the choice of the shape parameter. Chen (1997) proposed the exact
confidence interval and exact test about the shape parameter. Also the properties of the
order statistics of the log-logistic distribution discussed by Ragab and Green (1984), Ali and
Khan (1987), and Balakrishnan and Malik (1987). For further details on the importance
and applications of a log-logistic distribution one may refer to Franco (1984), Shoukri et al.
(1988), Ahmad et al. (1988), Robson and Reed (1999) and Geskus (2001).
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The present paper focuses on Bayesian testing the shape parameter in the log-logistic
distribution. When the shape parameter is say β > 1, the hazard rate function becomes
unimodal and when β ≤ 1, the hazard decreases monotonically.

In Bayesian model selection or testing problem, the Bayes factor under proper priors
or informative priors have been very successful. However, limited information and time
constraints often require the use of noninformative priors. Since noninformative priors such
as Jeffreys’ prior or reference prior (Berger and Bernardo, 1989, 1992) are typically improper
so that such priors are only defined up to arbitrary constants which affects the values of
Bayes factors. Spiegelhalter and Smith (1982), O’Hagan (1995) and Berger and Pericchi
(1996) have made efforts to compensate for that arbitrariness.

Spiegelhalter and Smith (1982) used the device of imaginary training sample in the context
of linear model comparisons to choose the arbitrary constants. But the choice of imaginary
training sample depends on the models under comparison, and so there is no guarantee
that the Bayes factor of Spiegelhalter and Smith (1982) is coherent for multiple model
comparisons. Berger and Pericchi (1996) introduced the intrinsic Bayes factor using a data-
splitting idea, which would eliminate the arbitrariness of improper prior. O’Hagan (1995)
proposed the fractional Bayes factor. For removing the arbitrariness he used to a portion of
the likelihood with a so-called the fraction b. These approaches have shown to be quite useful
in many statistical areas (Kang et al., 2013; Kang et al., 2014b). An excellent exposition of
the objective Bayesian method to model selection is Berger and Pericchi (2001).

In this paper, we propose the objective Bayesian one-sided hypothesis testing procedures
for the shape parameter in the log-logistic distribution based on the Bayes factors. The
outline of the remaining sections is as follows. In Section 2, we introduce the Bayesian
hypothesis testing based on the Bayes factors. In Section 3, under the reference prior, we
provide the Bayesian hypothesis testing procedures based on the fractional Bayes factor and
the intrinsic Bayes factors. In Section 4, simulation study and an example are given.

2. Intrinsic and fractional Bayes factors

Suppose that hypotheses H1,H2,· · · ,Hq are under consideration, with the data x = (x1, x2,
· · · , xn) having probability density function fi(x|θi) under hypothesis Hi. The parameter
vector θi is unknown. Let πi(θi) be the prior distributions of hypothesis Hi, and let pi be
the prior probability of hypothesis Hi, i = 1, 2, · · · , q. Then the posterior probability that
the hypothesis Hi is true is

P (Hi|x) =

 q∑
j=1

pj
pi
·Bji

−1 , (2.1)

where Bji is the Bayes factor of hypothesis Hj to hypothesis Hi defined by

Bji =

∫
fj(x|θj)πj(θj)dθj∫
fi(x|θi)πi(θi)dθi

=
mj(x)

mi(x)
. (2.2)

The Bji interpreted as the comparative support of the data for Hj versus Hi. The compu-
tation of Bji needs specification of the prior distribution πi(θi) and πj(θj). Often in Bayesian
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analysis, one can use noninformative priors πNi . Common choices are the uniform prior, Jef-
freys’ prior and the reference prior. The noninformative prior πNi is typically improper.
Hence the use of noninformative prior πNi in (2.2) causes the Bji to contain unspecified
constants. To solve this problem, Berger and Pericchi (1996) proposed the intrinsic Bayes
factor, and O’Hagan (1995) proposed the fractional Bayes factor.

One solution to this indeterminacy problem is to use part of the data as a training sample.
Let x(l) denote the part of the data to be so used and let x(−l) be the remainder of the
data, such that

0 < mN
i (x(l)) <∞, i = 1, · · · , q. (2.3)

In view (2.3), the posteriors πNi (θi|x(l)) are well defined. Now, consider the Bayes factor
Bji(l) with the remainder of the data x(−l) using πNi (θi|x(l)) as the priors:

Bji(l) =

∫
f(x(−l)|θj ,x(l))πNj (θj |x(l))dθj∫
f(x(−l)|θi,x(l))πNi (θi|x(l))dθi

= BNji ·BNij (x(l)) (2.4)

where

BNji = BNji (x) =
mN
j (x)

mN
i (x)

and

BNij (x(l)) =
mN
i (x(l))

mN
j (x(l))

are the Bayes factors that would be obtained for the full data x and training samples x(l),
respectively.

Berger and Pericchi (1996) proposed the use of a minimal training sample to compute
BNij (x(l)). Then, an average over all the possible minimal training samples contained in the
sample is computed. Thus the arithmetic intrinsic Bayes factor (AIBF) of Hj to Hi is

BAIji = BNji ×
1

L

L∑
l=1

BNij (x(l)), (2.5)

where L is the number of all possible minimal training samples. Also the median intrinsic
Bayes factor (MIBF) by Berger and Pericchi (1998) of Hj to Hi is

BMI
ji = BNji ×ME[BNij (x(l))], (2.6)

where ME indicates the median for all the training sample Bayes factors. However the AIBF
are often not suitable for nonnested situations, especially when testing one-sided hypotheses
as here (Dmochowski, 1996). An attractive alternative, given by Berger and Pericchi (1996)
is to embed the competing models in a larger encompassing model H0 so that all of the Hi

are nested within H0. The encompassing arithmetic intrinsic Bayes factor (EIBF) is then
defined as

BEIji = BNji ×
∑L
l=1B

N
i0 (x(l))∑L

l=1B
N
j0(x(l))

, (2.7)

where BNi0 (x(l)) = mN
i (x(l))/mN

0 (x(l)). Therefore we can also calculate the posterior prob-
ability of Hi using (2.1), where Bji is replaced by BMI

ji and BEIji from (2.6) and (2.7),
respectively.
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The fractional Bayes factor (O’Hagan, 1995) is based on a similar intuition to that behind
the intrinsic Bayes factor but, instead of using part of the data to turn noninformative priors
into proper priors, it uses a fraction,b,of each likelihood function, L(θi) = fi(x|θi), with the
remaining 1− b fraction of the likelihood used for model discrimination. Then the fractional
Bayes factor (FBF) of hypothesis Hj versus hypothesis Hi is

BFji = BNji ·
∫
Lb(x|θi)πNi (θi)dθi∫
Lb(x|θj)πNj (θj)dθj

= BNji ·
mb
i (x)

mb
j(x)

. (2.8)

O’Hagan (1995) proposed three ways for the choice of the fraction b. One common choice
of b is b = m/n, where m is the size of the minimal training sample, assuming that this
number is uniquely defined. (O’Hagan (1995, 1997) and the discussion by Berger and Mortera
in O’Hagan (1995)).

3. Bayesian hypothesis testing procedures

Let Xi, i = 1, · · · , n denote observations from the log-logistic distribution LL(α, β) with
the scale parameter α and the shape parameter β. Then likelihood function is given by

f(x,y|α, β) = βnαnβ
n∏
i=1

xβ−1i

(αβ + xβi )2
, (3.1)

where x = (x1, · · · , xn), α > 0 and β > 0.
The shape of the failure rate function of the log-logistic distribution depends on the shape

parameter β. When β ≤ 1, the hazard rate function is decreasing. When β > 1, the shape
of the hazard rate function is an upside-down bath tub. Thus we are interested in testing
the hypotheses H1 : β ≤ β0 versus H2 : β > β0 based on the fractional Bayes factor and the
intrinsic Bayes factors.

3.1. Bayesian hypothesis testing procedure based on the fractional Bayes factor

From (3.1) the likelihood function under the hypothesis H1 : β ≤ β0 is

L1(α, β|x) = βnαnβ
n∏
i=1

xβ−1i

(αβ1 + xβi )2
, (3.2)

where β ≤ β0. And under the hypothesis H1, the reference prior for (α, β) is

πN1 (α, β) ∝ α−1β−1, (3.3)

where β ≤ β0. The reference prior (3.3) derived by Kang et al. (2014a). Then from the
likelihood (3.2) and the reference prior (3.3), the element mb

1(x,y) of the FBF under H1 is
given by

mb
1(x) =

∫ β0

0

∫ ∞
0

Lb1(α, β|x)πN1 (α, β)dαdβ

=

∫ β0

0

∫ ∞
0

βbn−1αbnβ−1
n∏
i=1

x
b(β−1)
i

(αβ + xβi )2b
dαdβ. (3.4)
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For the hypothesis H2, the reference prior for (α, β) is

πN2 (α, β) ∝ α−1β−1, (3.5)

where β > β0. The likelihood function under the hypothesis H2 is

L2(α, β|x) = βnαnβ
n∏
i=1

xβ−1i

(αβ + xβi )2
, (3.6)

where β > β0. Thus from the likelihood (3.6) and the reference prior (3.5), the element
mb

2(x,y) of FBF under H2 is given as follows.

mb
2(x) =

∫ ∞
β0

∫ ∞
0

Lb2(α, β|x)πN2 (α, β)dαdβ

=

∫ ∞
β0

∫ ∞
0

βbn−1αbnβ−1
n∏
i=1

x
b(β−1)
i

(αβ + xβi )2b
dαdβ. (3.7)

Therefore the element BN21 of FBF is given by

BN21 =
S2(x)

S1(x)
, (3.8)

where

S1(x) =

∫ β0

0

∫ ∞
0

βn−1αnβ−1
n∏
i=1

xβi

(αβ + xβi )2
dαdβ

and

S2(x) =

∫ ∞
β0

∫ ∞
0

βn−1αnβ−1
n∏
i=1

xβi

(αβ + xβi )2
dαdβ.

And the ratio of marginal densities with fraction b is

mb
1(x)

mb
2(x)

=
S1(x; b)

S2(x; b)
, (3.9)

where

S1(x; b) =

∫ β0

0

∫ ∞
0

βbn−1αbnβ−1
n∏
i=1

xbβi

(αβ + xβi )2b
dαdβ

and

S2(x; b) =

∫ ∞
β0

∫ ∞
0

βbn−1αbnβ−1
n∏
i=1

xbβi

(αβ + xβi )2b
dαdβ.

Thus the FBF of H2 versus H1 is given by

BF21 =
S1(x; b)S2(x)

S1(x)S2(x; b)
. (3.10)

Note that the calculations of the FBF of H2 versus H1 require two dimensional integration.
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3.2. Bayesian hypothesis testing procedure based on the intrinsic Bayes factor

The element BN21 of the intrinsic Bayes factor is computed in the fractional Bayes factor. So
under minimal training sample, we only calculate the marginal densities for the hypotheses
H1 andH2, respectively. The marginal densities of (Xj1 , Xj2) are finite for all 1 ≤ j1 < j2 ≤ n
under each hypothesis (Kang et al., 2014a). Thus we conclude that any training sample of
size 2 is a minimal training sample.

We consider the encompassing model H0(= H1∪H2) : β > 0. Then the hypotheses H1 and
H2 are nested within H0. Therefore under the encompassing model, the marginal density
mN

0 (xj1 , xj2) is given by

mN
0 (xj1 , xj2) =

∫ ∞
0

∫ ∞
0

f(xj1 , xj2)|α, β)πN1 (α, β)dαdβ

=

∫ ∞
0

(xj1xj2)(β−1)

β(xβj1 + xβj2) log
xj2

xj1

(xβj2 − x
β
j1

)3
− 2

(xβj2 − x
β
j1

)2

 dβ.
Next for each hypothesis, the marginal density is as in the following. UnderH1 the marginal

density mN
1 (xj1 , xj2) is given by

mN
1 (xj1 , xj2) =

∫ β0

0

∫ ∞
0

f(xj1 , xj2)|α, β)πN1 (α, β)dαdβ

=

∫ β0

0

(xj1xj2)(β−1)

β(xβj1 + xβj2) log
xj2

xj1

(xβj2 − x
β
j1

)3
− 2

(xβj2 − x
β
j1

)2

 dβ.
And the marginal density mN

2 (xj1 , xj2) under H2 is given by

mN
2 (xj1 , xj2) =

∫ ∞
β0

∫ ∞
0

f(xj1 , xj2)|α, β)πN2 (α, β)dαdβ

=

∫ ∞
β0

(xj1xj2)(β−1)

β(xβj1 + xβj2) log
xj2

xj1

(xβj2 − x
β
j1

)3
− 2

(xβj2 − x
β
j1

)2

 dβ.
Therefore the EIBF of H2 versus H1 is given by

BEI21 =
S2(x)

S1(x)

[∑n
j1<j2

T1(xj1 , xj2)/T0(xj1 , xj2)∑n
j1<j2

T2(xj1 , xj2)/T0(xj1 , xj2)

]
, (3.11)

where

T0(xj1 , xj2) =

∫ ∞
0

(xj1xj2)β

β(xβj1 + xβj2) log
xj2

xj1

(xβj2 − x
β
j1

)3
− 2

(xβj2 − x
β
j1

)2

 dβ,
T1(xj1 , xj2) =

∫ β0

0

(xj1xj2)β

β(xβj1 + xβj2) log
xj2

xj1

(xβj2 − x
β
j1

)3
− 2

(xβj2 − x
β
j1

)2

 dβ
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and

T2(xj1 , xj2) =

∫ ∞
β0

(xj1xj2)β

β(xβj1 + xβj2) log
xj2

xj1

(xβj2 − x
β
j1

)3
− 2

(xβj2 − x
β
j1

)2

 dβ.
Also the MIBF of H2 versus H1 is given by

BMI
21 =

S2(x)

S1(x)
ME

[
T1(xj1 , xj2)

T2(xj1 , xj2)

]
. (3.12)

Note that the calculations of the AIBF and the MIBF of H2 versus H1 require two di-
mensional integration.

4. Numerical studies

In order to assess the Bayesian hypothesis testing procedures, we evaluate the posterior
probability for several configurations of (α, β) and n. In particular, for fixed (α, β), we
take 1,000 independent random samples of Xi with sample sizes n from the log-logistic
distribution. We want to test the hypotheses H1 : β ≤ 1 versus H2 : β > 1. The posterior
probabilities of H1 being true are computed assuming equal prior probabilities.

Table 4.1 shows the results of the averages and the standard deviations in parentheses of
posterior probabilities. In Table 4.1, PF (·), PAI(·) and PMI(·) are the posterior probabilities
of the hypothesis H1 being true based on FBF, EIBF and MIBF, respectively. From Table
4.1, the FBF, the EIBF and the MIBF accept the hypothesis H1 when the values of α2

are close to values of α1, whereas reject the hypothesis H1 when the values of α2 are far
from values of α1. Also the EIBF and the MIBF give a similar behavior for all sample sizes.
But the FBF favors the hypothesis H2 than the EIBF and the MIBF when the values of
α are close to 1 and are far from 1, respectively. That is, the FBF has considerable bias
toward the hypothesis H2. This fact does not a surprising result. Berger and Mortera (1999)
showed that the FBF has considerable bias toward one of the hypotheses in nonsymmetric
situations, and so the FBF should not be used in clearly nonsymmetric testing situations.

Example 4.1 This example is taken from Dey and Kundu (2010). The data is obtained
from Lawless (1982), and it represents the number of revolution before failure of each 23
ball bearings in the life tests and they are as follows: 17.88, 28.92, 33.0, 41.52, 42.12, 45.60,
48.8, 51.84, 51.96, 54.12, 55.56, 67.8, 68.44, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84,
127.92, 128.04, 173.4.

Dey and Kundu (2010) concluded that the log-normal distribution and the log-logistic
distribution have good fit for this data in terms of the log-likelihood values, Kolmogorov-
Smirnov distances and the χ2 values. For this data sets, the maximum likelihood estimates
of β and α are 3.349 and 64.011, respectively.

We want to test the hypotheses H1 : β ≤ β0 versus H2 : β > β0. The values of the Bayes
factors and the posterior probabilities of H1 are given in Table 4.2. From the results of Table
4.2, the posterior probabilities based on various Bayes factors give the same answer. The
the EIBF and the MIBF give almost the same results. But the FBF favors the hypothesis
H2 than the EIBF and the MIBF.
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Table 4.1 The averages and the standard deviations in parentheses of posterior probabilities

β0 α β n PF (H1|x) PEI(H1|x) PMI(H1|x)

1.0 0.5

0.5
5 0.670 (0.237) 0.857 (0.185) 0.812 (0.192)
10 0.870 (0.183) 0.960 (0.094) 0.949 (0.102)
20 0.976 (0.071) 0.995 (0.024) 0.993 (0.028)

0.7
5 0.491 (0.211) 0.721 (0.228) 0.678 (0.217)
10 0.613 (0.253) 0.826 (0.196) 0.803 (0.194)
20 0.769 (0.236) 0.912 (0.141) 0.902 (0.144)

0.9
5 0.379 (0.184) 0.593 (0.244) 0.563 (0.224)
10 0.397 (0.217) 0.646 (0.246) 0.627 (0.232)
20 0.436 (0.256) 0.683 (0.253) 0.669 (0.246)

1.0
5 0.339 (0.165) 0.543 (0.234) 0.519 (0.215)
10 0.315 (0.202) 0.547 (0.261) 0.534 (0.246)
20 0.307 (0.225) 0.544 (0.270) 0.535 (0.261)

1.1
5 0.301 (0.147) 0.492 (0.227) 0.475 (0.209)
10 0.243 (0.164) 0.453 (0.243) 0.445 (0.230)
20 0.203 (0.173) 0.406 (0.258) 0.400 (0.247)

1.3
5 0.243 (0.128) 0.402 (0.210) 0.399 (0.199)
10 0.162 (0.122) 0.325 (0.217) 0.328 (0.210)
20 0.095 (0.104) 0.216 (0.202) 0.218 (0.195)

1.5
5 0.202 (0.117) 0.333 (0.196) 0.334 (0.189)
10 0.102 (0.091) 0.211 (0.181) 0.217 (0.177)
20 0.040 (0.052) 0.100 (0.124) 0.105 (0.124)

1.0 1.0

0.5
5 0.682 (0.233) 0.866 (0.179) 0.818 (0.188)
10 0.856 (0.186) 0.956 (0.092) 0.941 (0.104)
20 0.973 (0.085) 0.993 (0.031) 0.991 (0.036)

0.7
5 0.486 (0.205) 0.715 (0.225) 0.667 (0.212)
10 0.614 (0.257) 0.822 (0.203) 0.796 (0.201)
20 0.756 (0.244) 0.904 (0.149) 0.890 (0.154)

0.9
5 0.387 (0.175) 0.608 (0.230) 0.574 (0.211)
10 0.406 (0.225) 0.651 (0.248) 0.629 (0.235)
20 0.445 (0.259) 0.689 (0.259) 0.671 (0.246)

1.0
5 0.338 (0.156) 0.545 (0.227) 0.517 (0.208)
10 0.323 (0.201) 0.555 (0.255) 0.539 (0.240)
20 0.315 (0.224) 0.555 (0.264) 0.543 (0.254)

1.1
5 0.304 (0.146) 0.493 (0.224) 0.476 (0.206)
10 0.255 (0.171) 0.468 (0.250) 0.456 (0.233)
20 0.214 (0.182) 0.418 (0.264) 0.411 (0.253)

1.3
5 0.251 (0.131) 0.414 (0.224) 0.404 (0.203)
10 0.166 (0.134) 0.325 (0.231) 0.322 (0.219)
20 0.097 (0.103) 0.221 (0.201) 0.222 (0.194)

1.5
5 0.213 (0.114) 0.351 (0.192) 0.352 (0.184)
10 0.098 (0.084) 0.205 (0.171) 0.212 (0.169)
20 0.043 (0.067) 0.103 (0.137) 0.106 (0.135)

1.0 5.0

0.5
5 0.672 (0.236) 0.856 (0.188) 0.778 (0.209)
10 0.866 (0.185) 0.957 (0.102) 0.925 (0.135)
20 0.976 (0.080) 0.994 (0.033) 0.988 (0.048)

0.7
5 0.489 (0.212) 0.713 (0.231) 0.632 (0.224)
10 0.606 (0.256) 0.816 (0.203) 0.752 (0.220)
20 0.769 (0.240) 0.908 (0.147) 0.873 (0.171)

0.9
5 0.379 (0.174) 0.596 (0.237) 0.529 (0.212)
10 0.400 (0.222) 0.642 (0.247) 0.574 (0.236)
20 0.451 (0.262) 0.687 (0.250) 0.635 (0.251)

1.0
5 0.325 (0.152) 0.527 (0.229) 0.475 (0.204)
10 0.310 (0.198) 0.533 (0.260) 0.481 (0.242)
20 0.312 (0.228) 0.541 (0.269) 0.492 (0.257)

1.1
5 0.296 (0.144) 0.479 (0.222) 0.436 (0.199)
10 0.239 (0.165) 0.441 (0.253) 0.394 (0.227)
20 0.204 (0.168) 0.401 (0.254) 0.363 (0.233)

1.3
5 0.240 (0.121) 0.392 (0.200) 0.371 (0.185)
10 0.161 (0.122) 0.314 (0.215) 0.286 (0.192)
20 0.096 (0.099) 0.214 (0.193) 0.195 (0.171)

1.5
5 0.202 (0.110) 0.332 (0.187) 0.316 (0.175)
10 0.113 (0.097) 0.228 (0.186) 0.213 (0.168)
20 0.045 (0.062) 0.106 (0.132) 0.100 (0.121)
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Table 4.2 Bayes factor and posterior probabilities of H1 : β ≤ β0
β0 BF

21 PF (H1|x) BEI
21 PAI(H1|x) BMI

21 PMI(H1|x)

2.5 17.7126 0.0534 6.6621 0.1305 6.2107 0.1387

3.0 4.7936 0.1726 1.5282 0.3955 1.5307 0.3951

3.3 2.5870 0.2788 0.7410 0.5744 0.7656 0.5664

3.6 1.4355 0.4106 0.3674 0.7313 0.3909 0.7190

4.0 0.6239 0.6158 0.1362 0.8801 0.1518 0.8682

4.5 0.1824 0.8457 0.0323 0.9688 0.0386 0.9629

5.0 0.0406 0.9610 0.0057 0.9943 0.0075 0.9926

5. Concluding remarks

In this paper, we developed the objective Bayesian one-sided hypothesis testing procedures
based on the fractional Bayes factor and the intrinsic Bayes factors for the shape parameter
of the log-logistic distribution under the reference priors. From our numerical results, the
developed hypothesis testing procedures give fairly reasonable answers for all parameter
configurations. The EIBF and the MIBF give the similar results. However the FBF clearly
favors the hypothesis H2 than the EIBF and the MIBF, and has considerable biased to the
hypothesis H2. Therefore from resutls of our simulation and example, we recommend the use
of the EIBF and the MIBF than the FBF for practical application in view of its simplicity
and ease of implementation.
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