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Abstract

This paper deals with the problem of testing on the equality of the scale parameters
in the log-logistic distributions. We propose default Bayesian testing procedures for the
scale parameters under the reference priors. The reference prior is usually improper
which yields a calibration problem that makes the Bayes factor to be defined up to a
multiplicative constant. Therefore, we propose the default Bayesian testing procedures
based on the fractional Bayes factor and the intrinsic Bayes factor under the reference
priors. To justify proposed procedures, a simulation study is provided and also, an
example is given.

Keywords: Fractional Bayes factor, intrinsic Bayes factor, log-logistic distribution, ref-
erence prior

1. Introduction

The log-logistic distribution is very useful in survival analysis of data sets such as survival
times of cancer patients in which the hazard increases initially and decreases later (Bennett,
1983). Also in economics, the distributions of wealth or income are commonly distributed
as Fisk distribution (Fisk, 1961). This Fisk distribution is an another form of a log-logistic
distribution. For further details on the importance and applications of a log-logistic distri-
bution, one may refer to Shoukri et al. (1988), Geskus (2001), Robson and Reed (1999) and
Ahmad et al. (1988).

The present paper focuses on Bayesian testing of the equality of scale parameters in
the log-logistic distributions. The log-logistic distribution can be used as the basis of an
accelerated failure time model by allowing scale parameter to differ between groups. An
accelerated life tests assume that the changes of the stress level make the scale parameter
different between groups but the shape parameter is fixed. In this case, one may want to
know whether a change of stress level makes a change of scale parameter or not. The equality
of scale parameters means that the stress is not strong enough to change the scale parameter.
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In Bayesian model selection or testing problem, the Bayes factor plays an important role
in this problem. This Bayes factor under improper priors contains arbitrary constants. For
objective Bayesian inference, the noninformaive priors such as reference prior (Berger and
Bernardo, 1989, 1992) or Jeffreys’ prior are typically improper. The use of the noninformative
priors for Bayesian model selection problem makes the Bayes factor be defined up to arbitrary
constants. Spiegelhalter and Smith (1982), O’Hagan (1995) and Berger and Pericchi (1996)
have studied this problem.

To deal with this problem, Spiegelhalter and Smith (1982) have used the imaginary train-
ing sample. O’Hagan (1995) proposed the fractional Bayes factor for removing the constants.
He used a portion of the likelihood. Berger and Pericchi (1996) proposed the use of training
sample. And they called the their Bayes factor as the intrinsic Bayes factor.

The fractional Bayes factor and intrinsic Bayes factor have shown to be very useful in var-
ious model selection problem (Kang et al., 2013, 2014b). So, we are interested in developing
the intrinsic Bayes factor and the fractional Bayes factor for solving the equality of scale
parameters in two log-logistic distributions.

The outline of the remaining sections is as follows. In Section 2, we introduce the Bayesian
hypothesis testing based on the Bayes factors. In Section 3, under the reference prior, we
provide the Bayesian hypothesis testing procedures based on the fractional Bayes factor and
the intrinsic Bayes factor. In Section 4, to justify proposed procedures, a simulation study
is provided and also, an example is given.

2. Intrinsic and fractional Bayes factors

Suppose that hypotheses Hy, Ha, ---, H, are under consideration, with the data x =
(z1,22, -+ ,z,) having probability density function f;(x|6;) of hypothesis H;. Assume that
the parameter vector 6; is unknown. Let 7;(6;) be the prior distributions of hypothesis H;,
and let p; be the prior probability of hypothesis H;, i = 1,2,---,q. Then the posterior
probability of the hypothesis H; being true is

-1

P(H;|x) = Z by , (2.1)

where Bj; is the Bayes factor of hypothesis H; to hypothesis H; defined by

J Fi(x16,)m;(6;)d6; _ my(x)
Bii = ffz 0)mi(0,)d0; — mi(x)’ 22

where m;(x) and m;(x) are posterior marginal distributions of hypotheses H; and H;,
respectively.

The Bj; is interpreted as the comparative support of the data for H; versus H;. The
computation of Bj; needs specification of the prior distribution 7;(6;) and 7;(6;). The use
of noninformative prior 7V which is improper in (2.2) causes the Bj; to contain unspecified
constants. To solve this problem, Berger and Pericchi (1996) proposed the intrinsic Bayes
factor, and O’Hagan (1995) proposed the fractional Bayes factor.

One solution to this indeterminacy problem is to use part of the data as a training sample.
Let x(I) denote the part of the data to be used as a training sample and let x(—I) be the
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remainder of the data, such that

where m¥ (-) is a posterior marginal with a noninformative prior 7V.
In view (2.3), the posteriors 72 (0;|x(1)) are well defined. Now, consider the Bayes factor

Bj;(l) with the remainder of the data x(—I) using 7V (0;|x(1)) as the priors:

J £ (=010, x(1))m 7 (0;]%(1))d6)

Ja! v oo
Bi) = T RN Gy, — B B 0 (24)
where N
BY = BN(x) = L(X)
i = B =N
and
m (x(1))

N
Bij (x(1)) = mé\’(x(l))
are the Bayes factors that would be obtained for the full data x and training samples x(1),
respectively.

Berger and Pericchi (1996) proposed the use of a minimal training sample, which is the
minimum of the training sample, to compute Bi]}[ (x(1)). Then, an average over all possible
combination of the minimal training samples is computed. Thus the arithmetic intrinsic
Bayes factor (AIBF) of H; to H; is

B = BN x - ZB (2.5)

where L is the number of all possible minimal training samples. Also the median intrinsic
Bayes factor (MIBF') by Berger and Pericchi (1998) of H; to H; is

B}' = B x ME[B]Y(x(1))], (2.6)

where M E indicates the median for all the training sample Bayes factors.

Therefore we can also calculate the posterior probability of H; using (2.1), where Bj; is
replaced by Bﬁl and BJJ-\ZH from (2.5) and (2.6), respectively.

The fractional Bayes factor (O’Hagan, 1995) is based on a similar intuition to that behind
the intrinsic Bayes factor but, instead of using part of the data to turn noninformative priors
into proper priors, it uses a fraction, b,of each likelihood function, L(8;) = f;(x|0;), with the
remaining 1 — b fraction of the likelihood used for model discrimination. Then the fractional
Bayes factor (FBF) of hypothesis H; versus hypothesis H; is

J L (x|05)mY (0:)d0; o mi(x)
By = Bji- J LY (x[0;)7 N (6;)do; — ﬁ'mb.(x)’

J

(2.7)

where mb and mb are posterlor margmal distributions using the b fraction of likelihood and
the nonmformatlve priors 7V and 7TJ , respectively.

O’Hagan (1995) proposed three ways for the choice of the fraction b. One common choice
of b is b = m/n, where m is the size of the minimal training sample, assuming that this
number is uniquely defined. See O’Hagan (1995, 1997) and the discussion by Berger and
Mortera in O’Hagan (1995).
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3. Bayesian hypothesis testing procedures

Suppose that the non-negative random variable X distributes as the log-logistic distribu-
tion with the scale parameter o and the shape parameter 5. Then the probability density
function of the random variable X is given by

2B-1

f(zla, B) = 6a m,

a,B >0,z >0.

Denote it as X ~ LL(w, B).

Let X;,i = 1,---,n denote observations from the log-logistic distribution L£L(c1, (1)
with the scale parameter a; and the shape parameter 51, and let Y;,i = 1,--- ,m denote
observations from L£L(aq, f2). Then likelihood function is given by

n B1—1 m B2—1

Yi
L(al,a27517/82|X,Y) = 1 énaglﬁla;’lﬁzﬂ H L ) (31>
i=1 (0‘?1 erfl)Q i=1 (042 + yf2)2
where x = (21, ,Zn), ¥ = (Y1, ,Ym), @1 > 0, f1 > 0, ag > 0 and B2 > 0. We

are interested in testing the hypotheses Hy : a3 = ag versus Hy : a3 # as based on the
fractional Bayes factor and the intrinsic Bayes factors.

3.1. Bayesian hypothesis testing procedure based on the fractional Bayes factor

From (3.1) the likelihood function under the hypothesis Hy : a1 = as is

n ﬁlfl m 52 1
Ll(a7/61a/82|xay) = Bnﬁmanﬁl+m52 t i . (32)
v o mm U

And under the hypothesis H;, the reference prior for («, 1, 52) is
™ (@, B1, B2) o a ' B Byt (3.3)

by Kang et al. (2014a). Then from the likelihood (3.2) and the reference prior (3.3), the
element m?(x,y) of the FBF under H; is given by

mb(x,y)

/ / / o, Br, Bal, y)m (o, By, B2)dad B s (3.4)

bn1 ghm—1 (8 Ba)—1 n (51 1) m yl?(ﬂz 1)
ﬂ mn— 6 m— np1+mpBa 1) dadﬁldﬁg.
/o / / ' 11 12 Hl<aﬁ2+yf2>2b

1= 1 aﬂl—’_‘r

For the hypothesis Ha, the reference prior for (aq, as, f1, B2) is

™5 (a1, o, Br, B2) o< o tag BBy (3.5)
by Kang et al. (2014a). The likelihood function under the hypothesis Ho is

n B1—1 m B2—1

Yi
Ly(ar, a2, B1, Balx,y) = BY éna?ﬁla;nmn H : . (3.6)
i (o + @) i (00 + )
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Thus from the likelihood (3.6) and the reference prior (3.5), the element m5(x,y) of
FBF under H, is given as follows.

/ / / / L5(ar, as, B1, Ba|x, )72 (a1, a2, Br, Bo)dar daad 3132

[ o

6(51 1) m yb(ﬁz 1)

i i doydondBrdps. (3.7)
I +x?1>2b£[1<a§2+y52>% S

my(x,y)

Therefore the element BY of FBF is given by

N __ mév(xvy) _ S2(XaY)
P ey TSIy 38)

where
Sl(X,y) / / / ﬂn 1ﬂm 1 n@l+7ﬂ[32 1
v}
X C dadp1dg
E<aﬂl+x51> E<aﬂz+yf2>2 o
and

S [LL Lo

yi
E( aq +lﬂ1) 1:|1:( 2 + 52)2da1da2dﬁld52.

And the ratio of marginal densities with fraction b is

mli (X, y) _ Sl (X7 y; b)

mb(x,y)  Sa(x,y;b)’ (3.9)
where
SI(XQ’;b) = / / / 5bn 1ﬁbm 1,b(nB1+mpB2)—
< H W dedsas,
i (P + xfl) 1 (af + yﬁz)
and

SQ(X7 ) b)

[LL L

yi
X da1 dagdﬂldﬂg .
e oo

Thus the FBF of Hy versus H; is given by
S b)S.
B21 I(X y; ) 2(X7 Y) (310)
Sl (Xv y)SZ (X, y; b)

Note that the calculations of the FBF of Hs versus H; require four dimensional integration.
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3.2. Bayesian hypothesis testing procedure based on the intrinsic Bayes factor

The element B of the intrinsic Bayes factor is computed in the fractional Bayes factor. So
under minimal training sample, we only calculate the marginal densities for the hypotheses
H, and Ha, respectively. The marginal densities of (Xj,, X},,Ys,,Ys,) are finite for all
1<j1 <jo<nand 1l <k < ks <m under each hypothesis (see Theorem 3.1 of Kang
et al. (2014a)). Thus we conclude that any training sample of size 4 is a minimal training
sample.

The marginal density m?y (z;,,2;,, Yk, Yx,) under Hy is given by
N
my (le » Lo Yk ykz)

= /0 /0 A f(leal'jmykuka‘a,BlvﬁQ)’ﬂ'{V(a,Bl,ﬁg)dadﬂldﬁQ

oo o0 o0 — — 1 ﬂ -
= 613 o2B1+B2)—1 (xj1$j2)(ﬁ1 b (ylmykz)(ﬁz Y (aﬁ —I-szl) Qdeﬁ dB
o Jo Jo T (@ +all ) (0l +y (@l gl
J1 k1 Yks

And the marginal density m2 (z;,,2;,, Yk, Yr,) under Hj is given by
N
my (Tjy, Tjo,s Yey s Yks )

= / / / / F (@) T Yk s Yo |01, 2, B1, B2) T (1, v, Br, B2 )devy devadBrd o
0 0 0 0

A A1) Jog iz
N /Oo /Oo(l’jlxjg)(ﬁlfl)(yklym)(ﬁrl) i VT :
o o (s —ag)* (=)
Ba(yi? +yi2) log j* 2
X B2 . B2y\3 T B2 B2ya dp1dfs.
(yk2 ykl) (i% ykl)

Note that in the above marginal density m’, integration with respect to a; and ay is
given by

/ / F(@)1 s Tha s Yoy s Yoo a1, 2, Br, B2)md (1, aa, Br, B2)dardas
0 0

—1 —1
_ /oo /Oo Blﬁ2a§31*1a332*1 (mj1x12)<£1 ) (ylﬂykz)(ﬁZ ) dondas.
o Jo (" + af el + a2 (F + ul2 el + o)
B B B B B B
— (aymy,) Y 1 i Tjy _ (g ) log o+,
- J1%J2
U e ) B Tty e
) 1 v v\ _ e Awd) | ol v
1 2
(o2 —we2)? \eg® + o2 ag® +u2 ) (w2 —wt) - an® vyt
B1 B1 P
T ) log ~12
= (zj,7; )(/31—1)( )(/32—1) A it JQ) g‘"”-7‘1 _ 2
J1%52 Yk1Yka (JJBI _ mﬁl)g’ (:L‘Bl _ 236-1)2
J2 J1 J2 J1
Ba(yi? + yi7) log 2 2

>< J—
(W2 —y2)? (Y2 —yp2)?
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Therefore the AIBF of Hs versus H; is given by

SQ (X7 Y)
S1(x,y)

Z Ty (2, o Yk Yk ) (3.11)

B =
T2(levmj27yk17yk2)

|

J1<g2,k1<kz
where L = nm(n — 1)(m — 1)/4,

Tl x]l y Ljos Ykq s ka)

—1 Ty Ty - 1 Pa—l (aﬁz + y ) -2
/ / / ﬁlﬁ a2([31+ﬁ2) 1 ( J1J )B (yk Yk ) do dﬁldBQ
(@ +al1 P (ad + 20 (0P + 42 )

and

TQ(Jle s Loy Ykqy ykg)

B1 zj
oo o0 . . —_—
Bl(lﬁl + )log 2 9
J A N T 2
B B ,3 /3
0 (321_37]11> (121_ 111)
Ba(yi? + ) log j 2
x B B g | WrdP2
(yk2 yk1> (yk2 ykl)

Also the MIBF of Hs versus H; is given by

BMI SQ(X y)ME Tl(levxjmykuylm) ) (312)
SI(X Y) TQ(x,j1?xj27yk17yk:2)

Note that the calculations of the AIBF and the MIBF of Hs versus H; require three
dimensional integration.

4. Numerical studies

In order to assess the Bayesian hypothesis testing procedures, we evaluate the posterior
probability for several configurations of (a1, (1, a2, 82) and (n,m). In particular, for fixed
(a1, B1, aa, B2), we take 500 independent random samples of X; and Y, with sample sizes n
and m from the log-logistic distributions, respectively.

In this simulation study, we assume that when the scale parameter a; = 1, a3=0.3, 0.8,
1, 1.6, 3 and when «a; = 3, as=1.8, 2.5, 3, 3.5, 5. Also, for the shape parameters, we set
(B1,82) = (1,1),(1,3),(3,3).

We want to test the hypotheses Hy : a3 = «g versus Hs : a1 # as. The posterior
probabilities of H; being true are computed assuming equal prior probabilities.

Tables 4.1 and 4.2 show the results of the averages and the standard deviations in paren-
theses of posterior probabilities. In Tables 4.1 and 4.2, P¥(.), PA1(:) and PM!(.) are the
posterior probabilities of the hypothesis H; being true based on FBF, AIBF and MIBF,
respectively. From Tables 4.1 and 4.2, the FBF, the AIBF and the MIBF accept the hy-
pothesis H; when the values of ay are close to values of a;, whereas reject the hypothesis
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H, when the values of as are far from values of «y. Also the AIBF and the MIBF give a
similar behavior for all sample sizes. However the AIBF and the MIBF favor the hypothesis
H, than the FBF.

Table 4.1 The averages and the standard deviations in parentheses of posterior probabilities

B1 B2 o1 s n,m PF(H,|x,y) PAT(H,|x,y) PMT(H,|x,y)
5,5 0.503 (0.157) 0.565 (0.166) 0.603 (0.161)

0.3 5,10 0.516 (0.192) 0.562 (0.190) 0.603 (0.186)
: 10,10 0.473 (0.230) 0.520 (0.238) 0.558 (0.241)
10,20 0.441 (0263) 0.473 (0.266) 0.510 (0.271)

5,5 0.586 (0.099) 0.653 (0.105) 0.688 (0.098)

0.8 5,10 0.624 (0.121) 0.673 (0.116) 0.711 (0.111)
’ 10,10 0.647 (0.137) 0.702 (0.134) 0.738 (0.129)
10,20 0.688 (0.140) 0.727 (0.134) 0.761 (0.129)

5,5 0.573 (0.116) 0.636 (0.159) 0.677 (0.118)

10 1.0 10 1.0 5,10 0.628 (0.124) 0.678 (0.123) 0.716 (0.116)
’ ’ ’ ’ 10,10 0.652 (0.126) 0.709 (0.124) 0.745 (0.117)
10,20 0.689 (0.144) 0.728 (0.140) 0.762 (0.134)

5,5 0.558 (0.117) 0.641 (0.125) 0.677 (0.119)

16 5,10 0.602 (0.141) 0.658 (0.143) 0.695 (0.138)
: 10,10 0.610 (0.165) 0.677 (0.166) 0.713 (0.162)
10,20 0.653 (0.173) 0.698 (0.172) 0.734 (0.167)

5,5 0.512 (0.148) 0.609 (0.153) 0.653 (0,147)

30 5,10 0.501 (0.194) 0.575 (0.202) 0.618 (0.196)
. 10,10 0.491 (0.213) 0.577 (0.219) 0.617 (0.217)
10,20 0.476 (0.242) 0.538 (0.252) 0.577 (0.253)

5,5 0.450 (0.188) 0.492 (0.195) 0.535 (0.190)

0.3 5,10 0.435 (0.224) 0.457 (0.215) 0.499 (0.214)
’ 10,10 0.362 (0.249) 0.388 (0.254) 0.428 (0.260)
10,20 0.361 (0.248) 0.372 (0.247) 0.411 (0.255)

5,5 0.576 (0.125) 0.619 (0.130) 0.652 (0.125)

0.8 5,10 0.611 (0A148) 0.621 (0.144) 0.661 (0A135)
: 10,10 0.654 (0.142) 0.688 (0.144) 0.725 (0.139)
10,20 0.677 (0.170) 0.682 (0.167) 0.718 (0.164)

5,5 0.577 (0.120) 0.624 (0.129) 0.660 (0.125)

1.0 3.0 1.0 1.0 5,10 0.628 (0.122) 0.640 (0.123) 0.678 (0.116)
10,10 0.656 (0.140) 0.691 (0.140) 0.729 (0.135)

10,20 0.690 (0.148) 0.695 (0.145) 0.733 (0.140)

5,5 0.551 (0.146) 0.598 (0.161) 0.637 (0.156)

1.6 5,10 0.591 (0.146) 0.606 (0.152) 0.643 (0.145)
: 10,10 0.613 (0.166) 0.653 (0.174) 0.691 (0.170)
10,20 0.640 (0.187) 0.646 (0.191) 0.685 (0.188)

5,5 0.457 (0.172) 0.510 (0.192) 0.552 (0.187)

3.0 5,10 0.478 (0.199) 0.504 (0.209) 0.549 (0.204)
. 10,10 0.380 (0.240) 0.420 (0.259) 0.462 (0,265)
10,20 0.414 (0.253) 0.431 (0.261) 0.472 (0.267)

5,5 0.233 (0.169) 0.246 (0.172) 0.273 (0.181)

0.3 5,10 0.167 (0.170) 0.168 (0.163) 0.191 (0.175)
: 10,10 0.042 (0.078) 0.043 (0.078) 0.051 (0.087)
10,20 0.024 (0.067) 0.023 (0.062) 0.027 (0.071)

5,5 0.620 (0.113) 0.628 (0.117) 0.652 (0.113)

0.8 5,10 0.654 (0.148) 0.632 (0.147) 0.658 (0.144)
: 10,10 0.650 (0.188) 0.654 (0.190) 0.678 (0.187)
10,20 0.675 (0204) 0.651 (0.204) 0.675 (0202)

5,5 0.625 (0.113) 0.633 (0.118) 0.655 (0.115)

3.0 3.0 1.0 1.0 5,10 0.703 (0.112) 0.682 (0.113) 0.704 (0.111)
10,10 0.707 (0.133) 0.710 (0.133) 0.733 (0.131)

10,20 0.753 (0.133) 0.728 (0.145) 0.752 (0.133)

5,5 0.511 (0.184) 0.523 (0.186) 0.552 (0.184)

16 5,10 0.528 (0.223) 0.512 (0.220) 0.541 (0.218)
: 10,10 0.464 (0.244) 0.469 (0.246) 0.496 (0.248)
10,20 0.438 (0269) 0.420 (0263) 0.444 (0.268)

5,5 0.264 (0.182) 0.287 (0.188) 0.317 (0.196)

30 5,10 0.182 (0.171) 0.187 (0.168) 0.210 (0.178)
: 10,10 0.058 (0.100) 0.064 (0.106) 0.074 (0.116)

10,20 0.035 (0.078) 0.035 (0.077) 0.041 (0.086)
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B1 B2 a1 as n,m PF(H,|x,y) PAT(Hy|x,y) PMT(H, |x,y)
5,5 0.567 (0.119) 0.678 (0.131) 0.715 (0.125)

18 5,10 0.606 (0.126) 0.695 (0.125) 0.734 (0.117)
: 10,10 0.602 (0.154) 0.697 (0.151) 0.735 (0.141)
10,20 0.639 (0A17O) 0.712 (0.161) 0.749 (0.154)

5,5 0.579 (0.098) 0.703 (0.113) 0.738 (0.104)

a5 5,10 0.632 (0.103) 0.724 (0.107) 0.762 (0.099)
: 10,10 0.640 (0.123) 0.740 (0.120) 0.777 (0.113)
10,20 0.674 (0.130) 0.753 (0.122) 0.790 (0.109)

5,5 0.593 (0.086) 0.719 (0.099) 0.754 (0.090)

10 10 30 30 5,10 0.6:38 (0.104) 0.734 (0.108) 0.771 (0.099)
10,10 0.647 (0.110) 0.755 (0.107) 0.790 (0.100)

10,20 0.679 (0.124) 0.761 (0.115) 0.796 (0.108)

5,5 0.575 (0.106) 0.703 (0.119) 0.737 (0.113)

35 5,10 0.621 (0.118) 0.724 (0.120) 0.760 (0.113)
: 10,10 0.638 (0.119) 0.754 (0.115) 0.790 (0.107)
10,20 0.682 (0.136) 0.764 (0.135) 0.799 (0.128)

5,5 0.582 (0.103) 0.730 (0.118) 0.765 (0.111)

5.0 5,10 0.619 (0.123) 0.734 (0.133) 0.772 (0.122)
’ 10,10 0.621 (0.141) 0.745 (0.141) 0.784 (0.131)
10,20 0.628 (0.181) 0.728 (0.183) 0.766 (0.176)

5,5 0.551 (0.133) 0.631 (0.130) 0.668 (0.124)

18 5,10 0.587 (0.148) 0.631 (0.138) 0.671 (0.130)
’ 10,10 0.581 (0.183) 0.644 (0.177) 0.685 (0.173)
10,20 0.618 (0.193) 0.650 (0.185) 0.689 (0.181)

5,5 0.577 (0.103) 0.665 (0.110) 0.700 (0.101)

2.5 5,10 0.618 (0A124) 0.660 (0.125) 0.698 (0A119)
: 10,10 0.626 (0.154) 0.695 (0.146) 0.732 (0.139)
10,20 0.670 (0.154) 0.702 (0.148) 0.741 (0.142)

5,5 0.579 (0.096) 0.664 (0.115) 0.700 (0.106)

10 3.0 30 3.0 5,10 0.621 (0.126) 0.667 (0.131) 0.703 (0.124)
10,10 0.638 (0.128) 0.709 (0.127) 0.748 (0.122)

10,20 0.688 (0.132) 0.719 (0.131) 0.755 (0.128)

5,5 0.574 (0.107) 0.661 (0.127) 0.698 (0.116)

35 5,10 0.615 (0.130) 0.661 (0.140) 0.701 (0.133)
: 10,10 0.634 (0.130) 0.708 (0.135) 0.746 (0.130)
10,20 0.666 (0.153) 0.700 (0.159) 0.737 (0.155)

5,5 0.540 (0.135) 0.637 (0.161) 0.675 (0.155)

50 5,10 0.570 (0.172) 0.624 (0.192) 0.662 (0.187)
. 10,10 0.558 (0.181) 0.641 (0.196) 0.683 (0,191)
10,20 0.605 (0.195) 0.650 (0.205) 0.691 (0.202)

5,5 0.481 (0.181) 0.505 (0.185) 0.536 (0.180)

18 5,10 0.495 (0.232) 0.493 (0.228) 0.521 (0.228)
. 10,10 0.424 (0.251) 0.441 (0.256) 0.468 (0.259)
10,20 0.390 (0.270) 0.383 (0.272) 0.410 (0.272)

5,5 0.597 (0.125) 0.628 (0.145) 0.651 (0.125)

a5 5,10 0.641 (0.150) 0.637 (0.160) 0.665 (0.144)
: 10,10 0.660 (0.159) 0.682 (0.159) 0.706 (0.156)
10,20 0.702 (0A170) 0.695 (0.170) 0.719 (0,166)

5,5 0.616 (0.103) 0.648 (0.108) 0.671 (0.104)

5,10 0.680 (0.122) 0.679 (0.121) 0.703 (0.118)

3.0 3.0 3.0 3.0 10,10 0.691 (0.137) 0.713 (0.138) 0.736 (0.136)
10,20 0.746 (0.132) 0.741 (0.133) 0.762 (0.130)

5,5 0.606 (0.109) 0.642 (0.114) 0.665 (0.110)

35 5,10 0.651 (0.139) 0.652 (0.139) 0.677 (0.134)
’ 10,10 0.667 (0.149) 0.694 (0.148) 0.718 (0.146)
10,20 0.699 (0A171) 0.694 (0.181) 0.719 (0.168)

5,5 0.483 (0.178) 0.532 (0.183) 0.560 (0.180)

5.0 5,10 0.503 (0.204) 0.517 (0.206) 0.547 (0.203)
: 10,10 0.420 (0.246) 0.454 (0.255) 0.481 (0.258)
10,20 0.371 (0.265) 0.376 (0.267) 0.401 (0.273)

Example 4.1 This example is taken from Dey and Kundu (2010). The data is obtained
from Lawless (1982), and it represents the number of revolution before failure of each 23 ball
bearings in the life tests. Dey and Kundu (2010) concluded that the log-normal distribution
and the log-logistic distribution have good fit for this data in terms of the log-likelihood
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values, Kolmogorov-Smirnov distances and the x? values. For testing the equality of the
scale parameters, we randomly divided this data into two groups. The data sets are given
by

Group 1 : 33.0, 41.52, 42.12, 48.8, 51.84, 54.12, 55.56, 68.44, 68.88, 84.12,
93.12, 105.12, 128.04
Group 2 : 173.4, 45.6, 98.64, 68.64, 105.84, 28.92, 127.92, 51.96, 17.88, 67.8

For this data sets, the maximum likelihood estimates of («y,81) and (aw, B2) are (67.47,
2.60) and (61.39, 4.39), respectively.

We want to test the hypotheses Hy : a3y = «g versus Hs : a1 # ag. The values of the
Bayes factors and the posterior probabilities of H; are given in Table 4.3. From the results
of Table 4.3, the posterior probabilities based on various Bayes factors give the same answer.
The FBF, the AIBF and the MIBF select the hypothesis H; and the values of AIBF and
MIBF are almost the same.

Table 4.3 Bayes factor and posterior probabilities of Hy : a1 = a2
BIi  PF(Hix,y) B  PHM(Hilx,y) BNT  PMI(Hx,y)
0.09745 0.91120 0.00047 0.99953 0.00029 0.99971

5. Concluding remarks

In this paper, we developed the objective Bayesian hypothesis testing procedures based on
the fractional Bayes factor and the intrinsic Bayes factors for the scale parameters of the log-
logistic distributions under the reference priors. From our numerical results, the developed
hypothesis testing procedures give fairly reasonable answers for all parameter configurations.
The FBF favours the hypothesis Hy rather than the AIBF and the MIBF, and the FBF
and the AIBF give the similar results. From our simulation and example, we recommend
the use of the FBF rather than the AIBF and MIBF for practical application in view of its
simplicity and ease of implementation.
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