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Abstract

This article deals with the problem of testing for the correlation coefficient in the
bivariate normal distribution. We propose Bayesian hypothesis testing procedures for
the bivariate normal correlation coefficient under the noninformative prior. The nonin-
formative priors are usually improper which yields a calibration problem that makes the
Bayes factor to be defined up to a multiplicative constant. So we propose the default
Bayesian hypothesis testing procedures based on the fractional Bayes factor and the
intrinsic Bayes factors under the reference priors. A simulation study and an example
are provided.

Keywords: Bivariate normal distribution, correlation coefficient, fractional Bayes factor,
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1. Introduction

Let (X,Y ) be a random vector distributed as a bivariate normal distribution BN (µ1,
µ2, σ1, σ2, ρ) with means µ1 and µ2, variances σ2

1 and σ2
2 , and correlation coefficient ρ. The

probability density function of (X,Y ) is given by

f(x, y|µ1, µ2, σ1, σ2, ρ) =
1

2π
σ−1

1 σ−1
2 (1− ρ2)−

1
2 exp

{
− 1

2(1− ρ2)

×
[

(x− µ1)2

σ2
1

− 2ρ
(x− µ1)(y − µ2)

σ1σ2
+

(y − µ2)2

σ2
2

]}
. (1.1)

respectively. The present paper focuses on Bayesian hypothesis testing for the correlation
coefficient in the bivariate normal distribution.
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Inference concerning the correlation coefficient of two random variables from the bivariate
normal distribution has been investigated by some authors (Fisher, 1915; Hotelling, 1953;
Ruben, 1966). Recently, Sun and Wong (2007) derived the confidence intervals for the cor-
relation coefficient based the likelihood-based higher-order asymptotic method, and showed
that the confidence interval based on the modified signed log-likelihood ratio method yields
very good results in terms of coverage probabilities.

When the null hypothesis is H0 : ρ = 0, one can use t statistic for testing the null
hypothesis. However, when the null hypothesis is H0 : ρ = ρ0, where ρ0 6= 0, one can test
H0 by using the statistic

W =
1

2
log

{
1 +R

1−R

}
,

where R is a sample correlation coefficient. We know that W converges standard normal
distribution when the sample size is large. This test is an approximate hypothesis test.
When the sample size is small, it may cause a problem in test or interval estimation.

Bayesian hypothesis testing provides the posterior probabilities of hypotheses under con-
sideration. This gives exact posterior probabilities of hypotheses of being true when the
prior probabilities of hypotheses of being true are given. Even in small sample, exact pos-
terior probabilities can be calculated in Bayesian hypothesis testing based on Bayes factor.
So, Bayesian hypothesis testing based on Bayes factor has merits over the test using W .

In Bayesian model selection or testing problem, the Bayes factors under proper priors
or informative priors have been very successful. However, limited information and time
constraints often require the use of noninformative priors. Since noninformative priors such
as Jeffreys’ prior or reference prior (Berger and Bernardo, 1989, 1992) are typically improper
so that such priors are only defined up to arbitrary constants which affect the values of Bayes
factors. Spiegelhalter and Smith (1982), O’Hagan (1995) and Berger and Pericchi (1996)
have made efforts to compensate for that arbitrariness.

Spiegelhalter and Smith (1982) used the device of imaginary training sample in the context
of linear model comparisons to choose the arbitrary constants. But the choice of imaginary
training sample depends on the models under comparison, and so there is no guarantee
that the Bayes factor of Spiegelhalter and Smith (1982) is coherent for multiple model
comparisons. Berger and Pericchi (1996) introduced the intrinsic Bayes factor using a data-
splitting idea, which would eliminate the arbitrariness of improper prior. O’Hagan (1995)
proposed the fractional Bayes factor. For removing the arbitrariness he utilized a portion
of the likelihood with a so-called the fraction b (0 < b < 1). These approaches have shown
to be quite useful in many statistical areas (Kang et al., 2006, 2008, 2010). An excellent
exposition of the objective Bayesian method to model selection is Berger and Pericchi (2001).

For the noninformative priors of the parameters of bivariate normal distribution, Berger
and Sun (2008) have considered reference priors and quantile matching priors for a variety of
parameters. One important example of theirs is the bivariate normal correlation coefficient.
However, these authors have not considered other matching criterion. So Ghosh et al. (2010)
derived the matching priors for the correlation coefficient based various matching criteria,
namely, quantile matching, highest posterior density matching, and matching via inversion
of test statistics. However the problem of Bayesian hypothesis testing for the correlation co-
efficient was not considered. Therefore there is a necessity for developing objective Bayesian
hypothesis testing procedure under noninformative priors.
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In this paper, we propose the objective Bayesian hypothesis testing procedures for the cor-
relation coefficient in bivariate normal distribution based on the Bayes factors. The outline
of the remaining sections is as follows. In Section 2, we introduce the Bayesian hypothesis
testing based on the Bayes factors. In Section 3, under the reference priors, we provide the
Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic
Bayes factors. In Section 4, simulation study and an example are given.

2. Intrinsic and fractional Bayes factors

Suppose that hypothesesH1,H2 ,· · · ,Hq are under consideration, with the data x = (x1, x2,
· · · , xn) having probability density function fi(x|θi) under hypothesis Hi. The parameter
vector θi is unknown. Let πi(θi) be the prior distributions of hypothesis Hi, and let pi be
the prior probability of hypothesis Hi,i = 1, 2, · · · , q . Then the posterior probability that
the hypothesis Hi is true is

P (Hi|x) =

 q∑
j=1

pj
pi
·Bji

−1

, (2.1)

where Bji is the Bayes factor of hypothesis Hj to hypothesis Hi defined by

Bji =

∫
fj(x|θj)πj(θj)dθj∫
fi(x|θi)πi(θi)dθi

=
mj(x)

mi(x)
. (2.2)

The Bji is interpreted as the comparative support of the data for Hj versus Hi. The com-
putation of Bji needs specification of the prior distribution πi(θi) and πj(θj). Often in
Bayesian analysis, one can use noninformative prior πNi . Common choices for this are the
uniform prior, Jeffreys’ prior and the reference prior. The noninformative prior πNi is typi-
cally improper. Hence the use of noninformative prior πNi in (2.2) causes the Bji to contain
unspecified constants. To solve this problem, Berger and Pericchi (1996) proposed the in-
trinsic Bayes factor, and O’Hagan (1995) proposed the fractional Bayes factor.

One solution to this indeterminacy problem is to use part of the data as a training sample.
Let x(l) denote the part of the data to be so used and let x(−l) be the remainder of the
data, such that

0 < mN
i (x(l)) <∞, i = 1, · · · , q. (2.3)

In view of (2.3), the posterior πNi (θi|x(l)) is well defined. Now, consider the Bayes factor
Bji(l) using πNi (θi|x(l)) as a prior based on the remainder of the data x(−l) :

Bji(l) =

∫
f(x(−l)|θj ,x(l))πNj (θj |x(l))dθj∫
f(x(−l)|θi,x(l))πNi (θi|x(l))dθi

= BNji ·BNij (x(l)) (2.4)

where

BNji = BNji (x) =
mN
j (x)

mN
i (x)

and

BNij (x(l)) =
mN
i (x(l))

mN
j (x(l))
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are the Bayes factors that would be obtained for the full data x and training samples x(l),
respectively.

Berger and Pericchi (1996) proposed the use of a minimal training sample to compute
BNij (x(l)). Then, an average over all the possible minimal training samples contained in the
sample is computed. Thus the arithmetic intrinsic Bayes factor (AIBF) of Hj to Hi is

BAIji = BNji ×
1

L

L∑
l=1

BNij (x(l)), (2.5)

where L is the number of all possible minimal training samples. Also the median intrinsic
Bayes factor (MIBF) by Berger and Pericchi (1998) of Hj to Hi is

BMI
ji = BNji ×ME[BNij (x(l))], (2.6)

where ME indicates the median for all the training sample Bayes factors.
Therefore we can also calculate the posterior probability of Hi using (2.1), where Bji is

replaced by BAIji and BMI
ji from (2.5) and (2.6), respectively.

The fractional Bayes factor (O’Hagan, 1995) is based on a similar intuition to that behind
the intrinsic Bayes factor but, instead of using part of the data to turn noninformative priors
into proper priors, it uses a fraction, b, of each likelihood function, L(θi) = fi(x|θi), with the
remaining 1− b fraction of the likelihood used for model discrimination. Then the fractional
Bayes factor (FBF) of hypothesis Hj versus hypothesis Hi is

BFji = BNji ·
∫
Lb(x|θi)πNi (θi)dθi∫
Lb(x|θj)πNj (θj)dθj

= BNji ·
mb
i (x)

mb
j(x)

. (2.7)

O’Hagan (1995) proposed three ways for the choice of the fraction b. One common choice
of b is b = m/n, where m is the size of the minimal training sample, assuming that this
number is uniquely defined.

3. Bayesian hypothesis testing procedures

Let (Xi, Yi), i = 1, · · · , n denote observations from the bivariate normal distribution
BN (µ1, µ2, σ1, σ2, ρ) with means µ1 and µ2, variances σ2

1 and σ2
2 , and correlation coeffi-

cient ρ. Then the joint probability density function of (Xi, Yi), i = 1, · · · , n is given by

f(x,y|µ1, µ2, σ1, σ2, ρ) =

(
1

2π

)n
σ−n1 σ−n2 (1− ρ2)−

n
2 exp

{
− 1

2(1− ρ2)

(
n∑
i=1

(xi − µ1)2

σ2
1

− 2ρ

n∑
i=1

(xi − µ1)(yi − µ2)

σ1σ2
+

n∑
i=1

(yi − µ2)2

σ2
2

)}
, (3.1)

where x = (x1, · · · , xn), y = (y1, · · · , yn), −∞ < µ1 < ∞, −∞ < µ2 < ∞, σ1 > 0, σ2 > 0
and |ρ| < 1. We are interested in testing the hypotheses H1 : ρ = ρ0 versus H2 : ρ 6= ρ0

based on the fractional Bayes factor and the intrinsic Bayes factors.
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3.1. Bayesian hypothesis testing procedure based on the fractional Bayes factor

From (3.1) the likelihood function under the hypothesis H1 : ρ = ρ0 is

L1(µ1, µ2, σ1, σ2, ρ|x,y) = (2π)−nσ−n1 σ−n2 (1− ρ2
0)−

n
2 exp

{
− 1

2(1− ρ2
0)

(
n∑
i=1

(xi − µ1)2

σ2
1

− 2ρ0

n∑
i=1

(xi − µ1)(yi − µ2)

σ1σ2
+

n∑
i=1

(yi − µ2)2

σ2
2

)}
. (3.2)

And under the hypothesis H1, the reference prior for (µ1, µ2, σ1, σ2) is

πN1 (µ1, µ2, σ1, σ2) ∝ σ−1
1 σ−1

2 . (3.3)

Then from the likelihood (3.2) and the reference prior (3.3), the element mb
1(x,y) of the

FBF under H1 is given by

mb
1(x,y) =

∫ ∞
0

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

Lb1(µ1, µ2, σ1, σ2|x,y)πN1 (µ1, µ2, σ1, σ2)dµ1dµ2dσ1dσ2

=

∫ ∞
0

∫ ∞
0

b

n

(
1

2π

)bn−1

σ−bn1 σ−bn2 (1− ρ2
0)−

bn−1
2

× exp

{
− b

2(1− ρ2
0)

(
S1

σ2
1

− 2
ρ0

σ1σ2
S12 +

S2

σ2
2

)}
dσ1dσ2, (3.4)

where x̄ =
∑n1

i=1 xi/n, S1 =
∑n
i=1(xi − x̄)2, ȳ =

∑n
i=1 yi/n, S2 =

∑n
i=1(yi − ȳ)2 and

S12 =
∑n
i=1(xi − x̄)(yi − ȳ). Let U =

σ2
1σ

2
2

S1S2
and V =

σ2
1/S1

σ2
2/S2

. Then integrating with respect

to U in (3.4), we can get

mb
1(x,y) =

∫ ∞
0

bΓ[bn− 1]

4n

(
1

2π

)bn−1

S
− bn−1

2
1 S

− bn−1
2

2 (1− ρ2
0)−

bn−1
2 V −1

×

[
b(V −

1
2 + V

1
2 − 2ρ0r)

2(1− ρ2
0)

]−(bn−1)

dV, (3.5)

where r = S12/(S
1
2
1 S

1
2
2 ). For the hypothesisH2 : ρ 6= ρ0, the reference prior for (ρ, µ1, µ2, σ1, σ2)

is
πN (ρ, µ1, µ2, σ1, σ2) ∝ (1− ρ2)−1σ−1

1 σ−1
2 . (3.6)

This reference prior derived by Sun and Berger (2008), and satisfy the second order matching
criterion (Ghosh et al., 2010). The likelihood function under the hypothesis H2 is

L2(ρ, µ1, µ2, σ1, σ2|x,y) = (2π)−nσ−n1 σ−n2 (1− ρ2)−
n
2 exp

{
− 1

2(1− ρ2)

(
n∑
i=1

(xi − µ1)2

σ2
1

− 2ρ

n∑
i=1

(xi − µ1)(yi − µ2)

σ1σ2
+

n∑
i=1

(yi − µ2)2

σ2
2

)}
. (3.7)
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Thus from the likelihood (3.7) and the reference prior (3.6), the element mb
2(x,y) of FBF

under H2 is given as follows.

mb
2(x,y)

=

∫ 1

−1

∫ ∞
0

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

Lb2(ρ, µ1, µ2, σ1, σ2|x,y)πN2 (ρ, µ1, µ2, σ1, σ2)dµ1dµ2dσ1dσ2dρ

=

∫ 1

−1

∫ ∞
0

∫ ∞
0

b

n

(
1

2π

)bn−1

σ−bn1 σ−bn2 (1− ρ2)−
bn+1

2

× exp

{
− b

2(1− ρ2)

(
S1

σ2
1

− 2
ρ

σ1σ2
S12 +

S2

σ2
2

)}
dσ1dσ2dρ. (3.8)

Let U =
σ2
1σ

2
2

S1S2
and V =

σ2
1/S1

σ2
2/S2

. Then integrating with respect to U in (3.8), we can get

mb
2(x,y) =

∫ 1

−1

∫ ∞
0

bΓ[bn− 1]

4n

(
1

2π

)bn−1

S
− bn−1

2
1 S

− bn−1
2

2 (1− ρ2)−
bn+1

2 V −1

×

[
b(V −

1
2 + V

1
2 − 2rρ)

2(1− ρ2)

]−(bn−1)

dV dρ. (3.9)

Combining (3.2) and (3.3), mN
1 (x,y) is mb

1(x,y) in (3.5) with b = 1. That is

mN
1 (x,y) = m1

1(x,y).

Similarly, mN
2 (x,y) is mb

2(x,y) in (3.8) with b = 1. Therefore, the element BN21 of FBF is
given by

BN21 =
mN

2 (x,y)

mN
1 (x,y)

=
S2(x,y)

S1(x,y)
, (3.10)

where

S1(x,y) =

∫ ∞
0

(1− ρ2
0)

n−1
2 V −1

[
V −

1
2 + V

1
2 − 2ρ0r

]−(n−1)

dV

and

S2(x,y) =

∫ 1

−1

∫ ∞
0

(1− ρ2)
n−3
2 V −1

[
V −

1
2 + V

1
2 − 2rρ

]−(n−1)

dV dρ.

And the ratio of marginal densities with fraction b is

mb
1(x,y)

mb
2(x,y)

=
S1(x,y; b)

S2(x,y; b)
, (3.11)

where

S1(x,y; b) =

∫ ∞
0

(1− ρ2
0)

bn−1
2 V −1

[
V −

1
2 + V

1
2 − 2ρ0r

]−(bn−1)

dV

and

S2(x,y; b) =

∫ 1

−1

∫ ∞
0

(1− ρ2)
bn−3

2 V −1
[
V −

1
2 + V

1
2 − 2rρ

]−(bn−1)

dV dρ.
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Thus the FBF of H2 versus H1 is given by

BF21 =
S2(x,y)

S1(x,y)
· S1(x,y; b)

S2(x,y; b)
. (3.12)

Note that the calculations of the FBF of H2 versus H1 requires only two dimensional inte-
gration.

3.2. Bayesian hypothesis testing procedure based on the intrinsic Bayes factor

The element BN21 of the intrinsic Bayes factor is computed in the fractional Bayes factor. So
under minimal training sample, we only calculate the marginal densities for the hypotheses
H1 and H2, respectively. The marginal density of (Xj1 , Yj1), (Xj2 , Yj2) and (Xj3 , Yj3) is
finite for all 1 ≤ j1 < j2 < j3 ≤ n under each hypothesis. Thus we conclude that any
training sample of size 3 is a minimal training sample.

The marginal density mN
1 ((xj1 , yj1), (xj2 , yj2), (xj3 , yj3)) under H1 is given by

mN
1 ((xj1 , yj1), (xj2 , yj2), (xj3 , yj3))

=

∫ ∞
0

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

f((xj1 , yj1), (xj2 , yj2), (xj3 , yj3)|µ1, µ2, σ1, σ2)

×πN1 (µ1, µ2, σ1, σ2)dµ1dµ2dσ1dσ2

=

∫ ∞
0

1

3

(
1

2π

)2

(S∗1 )−1(S∗2 )−1(1− ρ2
0)V −1

[
V −

1
2 + V

1
2 − 2ρ0r

∗
]−2

dV.

where x̄∗ =
∑3
i=1 xji/3, S∗1 =

∑3
i=1(xji − x̄∗)2, ȳ∗ =

∑3
i=1 yji/3, S∗2 =

∑3
i=1(yji − ȳ∗)2

and S∗12 =
∑3
i=1(xji − x̄∗)(yji − ȳ∗) and r∗ = S∗12/[(S

∗
1 )

1
2 (S∗2 )

1
2 ]. And the marginal density

mN
2 ((xj1 , yj1), (xj2 , yj2), (xj3 , yj3)) under H2 is given by

mN
2 ((xj1 , yj1), (xj2 , yj2), (xj3 , yj3))

=

∫ 1

−1

∫ ∞
0

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

f((xj1 , yj1), (xj2 , yj2), (xj3 , yj3)|ρ, µ1, µ2, σ1, σ2)

×πN2 (ρ, µ1, µ2, σ1, σ2)dµ1dµ2dσ1dσ2dρ

=

∫ 1

−1

∫ ∞
0

1

3

(
1

2π

)2

(S∗1 )−1(S∗2 )−1V −1
[
V −

1
2 + V

1
2 − 2r∗ρ

]−2

dV dρ

=

∫ ∞
0

1

3

(
1

2π

)2

(S∗1 )−1(S∗2 )−1 2

(1 + V )2 − 4(r∗)2V
dV.

Therefore the AIBF of H2 versus H1 is given by

BAI21 =
S2(x,y)

S1(x,y)

 1

L

n∑
j1,j2,j3

T1(xj1 , xj2 , xj3 , yj1 , yj2 , yj3)

T2(xj1 , xj2 , xj3 , yj1 , yj2 , yj3)

 , (3.13)

where L = [n(n− 1)(n− 2)]/6,

T1(xj1 , xj2 , xj3 , yj1 , yj2 , yj3) =

∫ ∞
0

(1− ρ2
0)V −1

[
V −

1
2 + V

1
2 − 2ρ0r

∗
]−2

dV
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and

T2(xj1 , xj2 , xj3 , yj1 , yj2 , yj3) =

∫ ∞
0

2

(1 + V )2 − 4(r∗)2V
dV.

Also the MIBF of H2 versus H1 is given by

BMI
21 =

S2(x,y)

S1(x,y)
ME

[
T1(xj1 , xj2 , xj3 , yj1 , yj2 , yj3)

T2(xj1 , xj2 , xj3 , yj1 , yj2 , yj3)

]
. (3.14)

Note that the calculations of the AIBF and the MIBF of H2 versus H1 require only two
dimensional integration.

4. Numerical studies

In order to assess the Bayesian hypothesis testing procedures, we evaluate the posterior
probability for several configurations of (ρ, µ1, µ2, σ1, σ2) and n. In particular, for fixed
(ρ, µ1, µ2, σ1, σ2), we take 1,000 independent random samples of (Xi, Yi) with sample size n
from the models (1.1). We want to test the hypotheses H1 : ρ = 0 versus H2 : ρ 6= 0. The
posterior probabilities of H1 being true are computed assuming equal prior probabilities.
For the choice of b for FBF, we use b = m0/n, where m0 is the number of minimal training
sample. Table 4.1 shows the results of the averages and the standard deviations in paren-
theses of posterior probabilities. In Table 4.1,PF (·),PAI(·) and PMI(·) are the posterior
probabilities of the hypothesis H1 being true based on FBF, AIBF and MIBF, respectively.
From the results of Table 4.1, the FBF, the AIBF and the MIBF give fairly reasonable
answers for all configurations. Also the AIBF and the MIBF give a similar behavior for all
sample sizes. However the FBF slightly favors the hypothesis H2 than the AIBF and the
MIBF.
Example 4.1 This example taken from Sun and Wong (2007). Levine et al. (1999)

examines the role of nonexercise activity thermogenesis in resistance to fat gain in humans.
Let x be the increase in energy use (in cal) from activity other than deliberate exercise, and
y be the fat gain (in kg). The data obtained by Levine et al. (1999) in (xi, yi), i = 1, · · · , 16
pairs are

(-94,4.2),(-57,3.0),(-29,3.7),(135,2.7),(143,3.2),(151,3.6),(245,2.4),(355,1.3)
(392,3.8),(473,1.7),(486,1.6),(535,2.2),(571,1.0),(580,0.4),(620,2.3),(690,1.1).

For this data sets, the maximum likelihood estimate (MLE) of ρ is -0.779. We want to test
the hypotheses H1 : ρ = ρ0 versus H2 : ρ 6= ρ0. The p-values based on the t-statistic and
z-statistic, the values of the Bayes factors and the posterior probabilities of H1 are given
in Table 4.2. The results in Table 4.2 indicate that for values of ρ0 that are far from the
MLE they select the hypothesis H2. Also from the results of Table 4.2, the FBF favors the
hypothesis H2 than the AIBF and the MIBF. The AIBF and the MIBF give almost the
same result.

5. Concluding remarks

In this paper, we developed the objective Bayesian hypothesis testing procedures based
on the fractional Bayes factor and the intrinsic Bayes factors for the correlation coefficient
in the bivariate normal distribution under the reference priors.
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Table 4.1 The averages and the standard deviations in parentheses of posterior probabilities

n σ1 σ2 ρ PF (H1|x,y) PAI(H1|x,y) PMI(H1|x,y)
10 1 1 0.1 0.596(0.137) 0.690 (0.145) 0.679 (0.139)

0.3 0.523(0.187) 0.611 (0.203) 0.603 (0.192)
0.5 0.396(0.216) 0.473 (0.242) 0.474 (0.231)
0.7 0.220(0.201) 0.269 (0.236) 0.276 (0.229)

1 3 0.1 0.597(0.134) 0.690 (0.142) 0.679 (0.136)
0.3 0.529(0.180) 0.618 (0.196) 0.610 (0.186)
0.5 0.401(0.218) 0.479 (0.247) 0.480 (0.237)
0.7 0.218(0.200) 0.267 (0.235) 0.275 (0.228)

1 5 0.1 0.593(0.145) 0.686 (0.155) 0.676 (0.148)
0.3 0.536(0.176) 0.626 (0.191) 0.618 (0.182)
0.5 0.410(0.214) 0.487 (0.240) 0.486 (0.229)
0.7 0.219(0.198) 0.268 (0.232) 0.276 (0.225)

20 1 1 0.1 0.657(0.158) 0.746 (0.156) 0.735 (0.153)
0.3 0.529(0.228) 0.618 (0.240) 0.609 (0.235)
0.5 0.272(0.240) 0.336 (0.275) 0.333 (0.269)
0.7 0.054(0.108) 0.073 (0.137) 0.074 (0.135)

1 3 0.1 0.654(0.161) 0.743 (0.160) 0.731 (0.158)
0.3 0.517(0.235) 0.605 (0.248) 0.596 (0.242)
0.5 0.272(0.245) 0.336 (0.281) 0.333 (0.275)
0.7 0.063(0.122) 0.084 (0.152) 0.085 (0.150)

1 5 0.1 0.650(0.166) 0.740 (0.165) 0.728 (0.162)
0.3 0.522(0.236) 0.610 (0.250) 0.602 (0.245)
0.5 0.265(0.240) 0.328 (0.274) 0.325 (0.268)
0.7 0.062(0.125) 0.082 (0.155) 0.083 (0.153)

30 1 1 0.1 0.692(0.162) 0.777 (0.156) 0.766 (0.155)
0.3 0.476(0.265) 0.560 (0.280) 0.551 (0.276)
0.5 0.177(0.217) 0.226 (0.254) 0.223 (0.249)
0.7 0.016(0.058) 0.022 (0.076) 0.022 (0.075)

1 3 0.1 0.693(0.163) 0.777 (0.155) 0.767 (0.155)
0.3 0.489(0.269) 0.573 (0.283) 0.565 (0.279)
0.5 0.167(0.210) 0.213 (0.249) 0.209 (0.243)
0.7 0.012(0.044) 0.018 (0.059) 0.018 (0.058)

1 5 0.1 0.688(0.172) 0.771 (0.167) 0.761 (0.166)
0.3 0.484(0.262) 0.570 (0.276) 0.561 (0.273)
0.5 0.180(0.215) 0.230 (0.252) 0.227 (0.247)
0.7 0.013(0.050) 0.018 (0.066) 0.018 (0.065)

Table 4.2 Bayes factors and posterior probabilities of H1 : ρ = ρ0
ρ0 p-value BF

21 PF (H1|x,y) BAI
21 PAI(H1|x,y) BMI

21 PMI(H1|x,y)

0.0 0.00038 125.08192 0.00793 93.16346 0.01062 76.69393 0.01287
-0.1 0.00069 46.78417 0.02093 33.49975 0.02899 28.84963 0.03350
-0.3 0.00829 7.38451 0.11927 4.92974 0.16864 4.68627 0.17586

-0.4607 0.05004 1.87655 0.34764 1.19902 0.45475 1.24431 0.44557
-0.5413 0.11620 0.99882 0.50029 0.62919 0.61380 0.67104 0.59843

-0.7 0.52949 0.37129 0.72924 0.23539 0.80946 0.26102 0.79301
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From our numerical results, we found that the developed hypothesis testing procedures
work well irrespective of parameter values. In Table 1, the AIBF and MIBF have higher
posterior probabilities in favor of the hypothesis H1 than that of FBF. They choose the
same hypothesis consistently when the sample size is 10 or 20. But when the sample size is
30 and ρ = 0.3, AIBF and MIBF favor H1 : ρ = 0 but FBF favors H2 : ρ 6= 0. Intuitively,
ρ = 0.3 is far from ρ = 0, it is reasonable to reject H1 : ρ = 0. When ρ = 0.5, 0.7, they select
H2 : ρ 6= 0.

Finally, we recommend the use of the FBF than the AIBF or MIBF for practical applica-
tion in view of its simplicity and ease of implementation.
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