• Title/Summary/Keyword: hypersurface

Search Result 256, Processing Time 0.028 seconds

MORPHISMS BETWEEN FANO MANIFOLDS GIVEN BY COMPLETE INTERSECTIONS

  • Choe, Insong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.689-697
    • /
    • 2009
  • We study the existence of surjective morphisms between Fano manifolds of Picard number 1, when the source is given by the intersection of a cubic hypersurface and either a quadric or another cubic hypersurface in a projective space.

  • PDF

REAL HYPERSURFACE OF A COMPLEX PROJECTIVE SPACE

  • Lee, O.;Shin, D.W.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.725-736
    • /
    • 1999
  • In the present paper we will give a characterization of homogeneous real hypersurfaces of type A1, A2 and B of a complex projective space.

  • PDF

KILLING STRUCTURE JACOBI OPERATOR OF A REAL HYPERSURFACE IN A COMPLEX PROJECTIVE SPACE

  • Perez, Juan de Dios
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.473-486
    • /
    • 2021
  • We prove non-existence of real hypersurfaces with Killing structure Jacobi operator in complex projective spaces. We also classify real hypersurfaces in complex projective spaces whose structure Jacobi operator is Killing with respect to the k-th generalized Tanaka-Webster connection.

Structure Jacobi Operators of Real Hypersurfaces with Constant Mean Curvature in a Complex Space Form

  • Hwang, Tae Yong;Ki, U-Hang;Kurihara, Hiroyuki
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1207-1235
    • /
    • 2016
  • Let M be a real hypersurface with constant mean curvature in a complex space form $M_n(c),c{\neq}0$. In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ with respect to the structure vector field ${\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$ commute with the structure tensor field ${\phi}$, then M is a homogeneous real hypersurface of Type A.