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Abstract. Let M be a real hypersurface with constant mean curvature in a complex

space form Mn(c), c ̸= 0. In this paper, we prove that if the structure Jacobi operator

Rξ = R(·, ξ)ξ with respect to the structure vector field ξ is ϕ∇ξξ-parallel and Rξ commute

with the structure tensor field ϕ, then M is a homogeneous real hypersurface of Type A.

1. Introduction

Let Mn(c) be an n-dimensional complex space form with constant holomorphic
sectional curvature 4c ̸= 0, and let J be its complex structure. Complete and simply
connected complex space forms are isometric to a complex projective space PnC or
a complex hyperbolic space HnC for c > 0 or c < 0, respectively.

Let M be a conected submanifold of Mn(c) with real codimension 1. We refer
to this simply as a real hypersurface below.

For a local unit normal vector field N of M , we define the structure vector field
ξ of M by ξ = −JN . The structure vector ξ is said to be principal if Aξ = αξ is
satisfied for some functuion α, where A is the shape operator of M .

A real hypersurface M is said to be a Hopf hypersurface if the structure vector
ξ of M is principal.
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Hopf hypersurfaces is realized as tubes over certain submanifolds in PnC, by
using its focal map (see Cecil and Ryan [2]). By making use of those results and the
mentioned work of Takagi ([15], [16]), Kimura [11] proved the local classification
theorem for Hopf hypersurfaces of PnC whose all principal curvatures are constant.
For the case HnC, Berndt [1] proved the classification theorem for Hopf hypersur-
faces whose all principal curvatures are constant. Among the several types of real
hypersurfaces appeared in Takagi’s list or Berndt’s list, a particular type of tubes
over totally geodesic PkC or HkC (0 ≤ k ≤ n − 1) adding a horosphere in HnC,
which is called type A, has a lot of nice geometric properties.

The structure vector field ξ plays an important role in the theory of real hy-
persurfaces in a complex space form Mn(c). Related to the structure vector field
ξ the Jacobi operator Rξ defined by Rξ = R(·, ξ)ξ for the curvature tensor R on a
real hypersurface M in Mn(c) is said to be a structure Jacobi operator on M . The
structure Jacobi operator has a fundamental role in contact geometry. In [3], Cho
and second author started the study on real hypersurfaces in complex space form by
using the operator Rξ. In particular the structure Jacobi operator has been studied
under the various commutative condition ([3], [7], [10], [14]). For example, Pérez et
al. [14] called that real hypersurfaces M has commuting structure Jacobi operator
if RξRX = RXRξ for any vector field X on M , and proved that there exist no real
hypersurfaces in Mn(c) with commuting structure Jacobi operator. On the other
hand Ortega et al. [12] have proved that there are no real hypersurfaces in Mn(c)
with parallel structure Jacobi operator Rξ, that is, ∇XRξ = 0 for any vector field
X on M . More generally, such a result has been extended by [13]. In this situa-
tion, if naturally leads us to be consider another condition weaker than parallelness.
In the preceding work, we investigate the weaker condition ξ-parallelness, that is,
∇ξRξ = 0 (cf. [4], [8], [9]). Moreover some works have studied several conditions on
the structure Jacobi operator Rξ and given some results on the classification of real
hypersurfaces of Type A in complex space form ([3], [5], [8] and [9]). The following
facts are used in this paper without proof.

Theorem 1.1.([5]) Let M be a real hypersurface in a nonflat complex space form
Mn(c), c ̸= 0 which satisfies Rξ(Aϕ− ϕA) = 0. Then M is a Hopf hypersurface in
Mn(c). Further, M is locally congruent to one of the following hypersurfaces:

(I) In cases that Mn(c) = PnC with η(Aξ) ̸= 0,

(A1) a geodesic hypersphere of radius r, where 0 < r < π/2 and r ̸= π/4;

(A2) a tube of radius r over a totally geodesic PkC for some k ∈ {1, . . . , n−2},
where 0 < r < π/2 and r ̸= π/4.

(II) In cases Mn(c) = HnC,

(A0) a horosphere;

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
Hn−1C;

(A2) a tube over a totally geodesic HkC for some k ∈ {1, . . . , n− 2}.
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In continuing work [10] Nagai, Takagi and the first author proved the following:

Theorem 1.2.(Ki, Nagai and Takagi [10]) Let M be a real hypersurface in a nonflat
complex space form Mn(c), c ̸= 0 If M satisfies Rξϕ = ϕRξ and at the same time
RξS = SRξ. Then M is the same types as those in Theorem 1.1, where S denotes
the Ricci tensor of M .

In [7], the authors started the study on real hypersurfaces in a complex space
form with ϕ∇ξξ-parallel structure Jacobi operator Rξ, that is, ∇ϕ∇ξξRξ = 0 for the
vector ϕ∇ξξ orthogonal to ξ. In previous paper [6], Kim and two of present authors
prove that if the structure Jacobi operator Rξ is ϕ∇ξξ-parallel and Rξ commute
with the structure tensor ϕ, then M is homogeneous real hypersurfaces of Type
A provided that TrRξ is constant. The main purpose of the present paper is to
prove that if the structure Jacobi operator is ϕ∇ξξ-parallel and Rξ commute with
the structure tensor field ϕ, then the real hypersurfaces M with constant mean
curvature is homogeneous real hypersurfaces of Type A.

All manifolds in this paper are assumed to be connected and of class C∞ and
the real hypersurfaces are supposed to be oriented.

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form Mn(c), c ̸= 0
with almost complex structure J , and N be a unit normal vector field on M .
The Riemannian connection ∇̃ in Mn(c) and ∇ in M are related by the following
formulas for any vector fields X and Y on M :

∇̃XY = ∇XY + g(AX,Y )N, ∇̃XN = −AX

where g denotes the Riemannian metric of M induced from that of Mn(c) and A
denotes the shape operator of M in direction N . For any vector field X tangent to
M , we put

JX = ϕX + η(X)N, JN = −ξ.

We call ξ the structure vector field (or the Reeb vector field) and its flow also
denoted by the same latter ξ. The Reeb vector field ξ is said to be principal if
Aξ = αξ, where α = η(Aξ).

A real hypersurface M is said to be a Hopf hypersurface if the Reeb vector field
ξ is principal. It is known that the aggregate (ϕ, ξ, η, g) is an almost contact metric
structure on M , that is, we have

ϕ2X = −X + η(X)ξ, g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),

η(ξ) = 1, ϕξ = 0, η(X) = g(X, ξ)

for any vector fields X and Y on M . From Kähler condition ∇̃J = 0, and taking
account of above equations, we see that

∇Xξ = ϕAX,(2.1)

(∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ(2.2)
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for any vector fields X and Y tangent to M .
Since we consider that the ambient space is of constant holomorphic sectional

curvature 4c, equations of the Gauss and Codazzi are respectively given by

(2.3)
R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY

−2g(ϕX, Y )ϕZ}+ g(AY,Z)AX − g(AX,Z)AY,

(2.4) (∇XA)Y − (∇Y A)X = c{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ}

for any vector fields X,Y and Z on M , where R denotes the Riemannian curvature
tensor of M .

In what follows, to write our formulas in convention forms, we denote by α =
η(Aξ), β = η(A2ξ) and h = TrA, and for a function f we denote by ∇f the gradient
vector field of f .

From the Gauss equation (2.3), the Ricci tensor S of M is given by

(2.5) SX = c{(2n+ 1)X − 3η(X)ξ}+ hAX −A2X

for any vector field X on M .
Now, we put

(2.6) Aξ = αξ + µW,

where W is a unit vector field orthogonal to ξ. In the sequel, we put U = ∇ξξ, then
by (2.1) we see that

(2.7) U = µϕW

and hence U is orthogonal to W . So we have g(U,U) = µ2. Using (2.7), it is clear
that

(2.8) ϕU = −Aξ + αξ,

which shows that g(U,U) = β − α2. Thus it is seen that

(2.9) µ2 = β − α2.

Making use of (2.1), (2.7) and (2.8), it is verified that

µg(∇XW, ξ) = g(AU,X),(2.10)

g(∇Xξ, U) = µg(AW,X)(2.11)

because W is orthogonal to ξ.
Now, differentiating (2.8) covariantly and taking account of (2.1) and (2.2), we

find

(2.12) (∇XA)ξ = −ϕ∇XU + g(AU +∇α,X)ξ −AϕAX + αϕAX,
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which together with (2.4) implies that

(2.13) (∇ξA)ξ = 2AU +∇α.

Applying (2.12) by ϕ and making use of (2.11), we obtain

(2.14) ϕ(∇XA)ξ = ∇XU + µg(AW,X)ξ − ϕAϕAX − αAX + αg(Aξ,X)ξ,

which connected to (2.1), (2.9) and (2.13) gives

(2.15) ∇ξU = 3ϕAU + αAξ − βξ + ϕ∇α.

Using (2.3), the structure Jacobi operator Rξ is given by

(2.16) Rξ(X) = R(X, ξ)ξ = c{X − η(X)ξ}+ αAX − η(AX)Aξ

for any vector field X on M . Differentiating this covariantly along M , we find

(2.17)

g((∇XRξ)Y,Z) = g(∇X(RξY )−Rξ(∇XY ), Z)

= −c(η(Z)g(∇Xξ, Y ) + η(Y )g(∇Xξ, Z))

+(Xα)g(AY,Z) + αg((∇XA)Y,Z)

−η(AZ){g((∇XA)ξ, Y ) + g(AϕAX, Y )}
−η(AY ){g((∇XA)ξ, Z) + g(AϕAX,Z)}.

From (2.5) and (2.16), we have

(2.18)
(RξS − SRξ)(X) = −η(AX)A3ξ + η(A3X)Aξ − η(A2X)(hAξ − cξ)

+(hη(AX)− cη(X))A2ξ − ch{η(AX)ξ − η(X)Aξ}.

Let Ω be the open subset of M defined by

Ω = {p ∈ M ;Aξ − αξ ̸= 0}.

At each point of Ω, the Reeb vector field ξ is not principal. That is, ξ is not an
eigenvector of the shape operator A of M if Ω ̸= ∅.

In what follows we assume that Ω is not an empty set in order to prove our main
theorem by reductio ad absurdum, unless otherwise stated, all discussion concerns
the set Ω.

3. Real Hypersurfaces Satisfying Rξϕ = ϕRξ

Let M be a real hypersurface in Mn(c), c ̸= 0. We suppose that Rξϕ = ϕRξ,
which means that the eigenspace Rξ is invariant by the structure tensor ϕ. Then
by using (2.16) we have

(3.1) α(ϕAX −AϕX) = g(Aξ,X)U + g(U,X)Aξ.
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Using (3.1), it is clear that α ̸= 0 on Ω. So a function λ given by β = αλ is defined.
Because of (2.9), we have

(3.2) µ2 = αλ− α2.

Replacing X by U in (3.1) and taking account of (2.8), we find

(3.3) ϕAU = λAξ −A2ξ,

which enable us to obtain

(3.4) ϕA2ξ = AU + λU

because U is orthogonal to Aξ. From this and (2.6) we have

(3.5) µϕAW = AU + (λ− α)U,

which together with (2.7) yields

(3.6) g(AW,U) = 0.

Using (2.6) and (3.3), we can write (2.15) as

(3.7) ∇ξU = (3λ− 2α)Aξ − 3µAW − αλξ + ϕ∇α.

Since α ̸= 0 on Ω, (3.1) reformed as

(3.8) (ϕA−Aϕ)X = η(X)U + u(X)ξ + τ(u(X)W + w(X)U),

where a 1-form u is defined by u(X) = g(U,X) and w by w(X) = g(W,X), where
we put

(3.9) ατ = µ, λ− α = µτ.

Differentiating (3.8) covariantly and taking the inner product with any vector field
Z, we find

(3.10)

g(ϕ(∇Y A)X,Z) + g(ϕ(∇Y A)Z,X)

= −η(AX)g(AY,Z)− g(AX,Y )η(AZ)

+g(A2X,Y )η(Z) + η(X)g(A2Y, Z)

+(η(X) + τw(X))g(∇Y U,Z)

+g(∇Y U,X)(η(Z) + τw(Z))

+u(X)g(∇Y ξ, Z) + g(∇Y ξ,X)u(Z)

+(Y τ)(u(X)w(Z) + u(Z)w(X))

+τ(u(X)g(∇Y W,Z) + g(∇Y W,X)u(Z))
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because of (2.1) and (2.2). From this, taking the skew-symmetric part with respect
to X and Y , and making use of the Codazzi equation (2.4), we find

(3.11)

c(η(X)g(Y, Z)− η(Y )g(X,Z))

+g((∇XA)ϕY,Z)− g((∇Y A)ϕX,Z)

= −η(AX)g(AY,Z) + η(AY )g(AX,Z)

+η(X)g(A2Y, Z)− η(Y )g(A2X,Z)

+(η(X) + τw(X))g(∇Y U,Z)− (η(Y ) + τw(Y ))g(∇XU,Z)

+(g(∇Y U,X)− g(∇XU, Y ))(η(Z) + τw(Z))

+u(X)g(∇Y ξ, Z)− u(Y )g(∇Xξ, Z)

+(g(∇Y ξ,X)− g(∇Xξ, Y ))u(Z)

+(Y τ)(u(X)w(Z) + u(Z)w(X))− (Xτ)(u(Y )w(Z) + u(Z)w(Y ))

+τ{u(X)g(∇Y W,Z)− u(Y )g(∇XW,Z)}
+τ{(g(∇Y W,X)− g(∇XW,Y ))u(Z)}.

Interchanging Y and Z in (3.10), we obtain

g(ϕ(∇ZA)X,Y ) + g(ϕ(∇ZA)Y,X)

= −η(AX)g(AY,Z)− g(AX,Z)η(AY )

+ g(A2X,Z)η(Y ) + η(X)g(A2Y, Z)

+ (η(X) + τw(X))g(∇ZU, Y ) + g(∇ZU,X)(η(Y ) + τw(Y ))

+ u(X)g(∇Zξ, Y ) + g(∇Zξ,X)u(Y )

+ (Zτ)(u(X)w(Y ) + u(Y )w(X))

+ τ(u(X)g(∇ZW,Y ) + g(∇ZW,X)u(Y )),

which connected to (2.4) and (3.11)

(3.12)

2g((∇Y A)ϕX,Z) + 2c(η(Z)g(X,Y )− η(X)g(Y, Z))

+2η(X)g(A2Z, Y )− 2η(AX)g(AZ, Y )

+(g(∇ZU,X)− g(∇XU,Z))(η(Y ) + τw(Y ))

+(g(∇Y U,X)− g(∇XU, Y ))(η(Z) + τw(Z))

+(g(∇ZU, Y ) + g(∇Y U,Z))(η(X) + τw(X))

+(g(∇Zξ,X)− g(∇Xξ, Z))u(Y ) + (g(∇Y ξ,X)− g(∇Xξ, Y ))u(Z)

+(g(∇Zξ, Y ) + g(∇Y ξ, Z))u(X) + (Y τ)(u(X)w(Z) + u(Z)w(X))

+(Zτ)(u(X)w(Y ) + u(Y )w(X))− (Xτ)(u(Y )w(Z) + u(Z)w(Y ))

+τ{u(X)(g(∇ZW,Y ) + g(∇Y W,Z))

+u(Z)(g(∇XW,Y )− g(∇Y W,X))

+u(Y )(g(∇ZW,X)− g(∇XW,Z))} = 0.
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If we put X = ξ in (3.12), then we have

(3.13)

g(∇Y U,Z) + g(∇ZU, Y ) + 2c(η(Z)η(Y )− g(Z, Y ))

+2g(A2Y,Z)− 2αg(AY,Z)− du(ξ, Z)(η(Y ) + τw(Y ))

−du(ξ, Y )(η(Z) + τw(Z))− 2u(Y )u(Z)

−(ξτ)(u(Y )w(Z) + u(Z)w(Y ))

−τ{u(Z)dw(ξ, Y ) + u(Y )dw(ξ, Z)} = 0,

where d denotes the operator of the exterior derivative.

4. Real Hypersurfaces Satisfying Rξϕ = ϕRξ and ∇ϕ∇ξξRξ = 0

We will continue our discussions under the same hypothesis Rξϕ = ϕRξ as in
Section 3. Further, suppose that∇ϕ∇ξξRξ = 0 and then∇WRξ = 0 since we assume
that µ ̸= 0. In the following, arguments discussed on [6] are reviewed. Replacing
X by W in (2.17), we find

(4.1)

(Wα)g(AY,Z)− c{η(Z)g(ϕAW,Y ) + η(Y )g(ϕAW,Z)}
+αg((∇WA)Y, Z)− η(AZ){g((∇WA)ξ, Y ) + g(AϕAW,Y )}
−η(AY ){g((∇WA)ξ, Z) + g(AϕAW,Z)} = 0

by virtue of ∇WRξ = 0. Putting Y = ξ in this and making use of (2.13) and (3.6),
we obtain

(4.2) αAϕAW + cϕAW = 0

because U and W are mutually orthogonal. From this and (2.16), it is seen that
RξϕAW = 0 by virtue of (3.6), and hence RξAW = 0 which together with (2.16)
implies that

(4.3) αA2W = −cAW + cµξ + µ(α+ g(AW,W ))Aξ,

which unables us to obtain

(4.4) αg(A2W,W ) = (µ2 − c)g(AW,W ) + αµ2.

Since α ̸= 0, β = αλ and (3.2), it is clear that

(4.5) g(A2W,W ) =
(
λ− α− c

α

)
g(AW,W ) + µ2.

Combining (3.5) to (4.2), we get

(4.6) αA2U = −(µ2 + c)AU − c(λ− α)U.

If we apply µW to (3.3) and make use of (2.6), then we find

(4.7) g(AU,U) = µ2(g(AW,W ) + α− λ).
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Using (4.2), we see from (4.1)

α(∇WA)X =− (Wα)AX + η(AX)(∇WA)ξ + g((∇WA)ξ,X)Aξ

− c

α
µ(w(X)ϕAW + g(ϕAW,X)W )

for any vector field X, which together with (3.5) yields

α(∇WA)X =− (Wα)AX + η(AX)(∇WA)ξ + g((∇WA)ξ,X)Aξ

− c

α
{w(X)AU + u(AX)W + (λ− α)(w(X)U + u(X)W )}.

(4.8)

Now, if we put X = W in (2.12), and make use of (3.5) and (4.2), then we find

(4.9) (∇WA)ξ = −ϕ∇WU + (Wα)ξ +
1

µ

(
α+

c

α

)
{AU + (λ− α)U)}.

Also, if we take the inner product (2.12) with Aξ and take account of (2.6), (3.2)
and (3.4), then we obtain

α(Xα) + µ(Xµ) = g(αξ + µW, (∇XA)ξ)− g(A2U + λAU,X),

which connected to (2.4), (2.13) and (4.6) yields

(4.10) µ(∇WA)ξ = −
(
α+

c

α

)
AU − c

α
(λ+ α)U + µ∇µ.

If we take the inner product (4.10) with ξ and make use of (2.13), then we find

(4.11) Wα = ξµ

because AU and W are mutually orthogonal. Using (4.10), we can write (4.8) as

(4.12)

α(∇WA)X + (Wα)AX

+
1

µ
η(AX)

{(
α+

c

α

)
AU +

c

α
(λ+ α)U − µ∇µ

}
+
1

µ

{(
α+

c

α

)
u(AX) +

c

α
(λ+ α)u(X)− µ(Xµ)

}
Aξ

+
c

α
{w(X)AU + u(AX)W + (λ− α)(w(X)U + u(X)W )} = 0.

Putting X = W in this, we get

(4.13) α(∇WA)W + (Wα)AW − (Wµ)Aξ +

(
α+

2c

α

)
AU +

2cλ

α
U − µ∇µ = 0.

Combining (4.9) to (4.10), we obtain

µϕ∇WU − µ(Wα)ξ + µ∇µ = 2
(
α+

c

α

)
AU +

(
µ2 +

2c

α
λ

)
U.
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If we apply ϕ to this and make use of (2.8), (2.11) and (3.3), then we find

− µ∇WU − µ2g(AW,W )ξ + µϕ∇µ

= 2
(
α+

c

α

)
(λAξ −A2ξ)− µ

(
µ2 +

2c

α
λ

)
W,

which together with (2.6) yields

(4.14)
µ∇WU = µϕ∇µ+ (2c− µ2)Aξ + 2µ

(
α+

c

α

)
AW

−(αµ2 + 2cλ+ µ2g(AW,W ))ξ.

Now, we can take a orthonormal frame field {e0 = ξ, e1 = W, e2, . . . , en, en+1 =
ϕe1 = (1/µ)U, en+2 = ϕe2, . . . , e2n = ϕen} of M . Differentiating (2.6) covariantly
and making use of (2.1), we find

(4.15) (∇XA)ξ +AϕAX = (Xα)ξ + αϕAX + (Xµ)W + µ∇XW,

which implies

(4.16) µdivW = µ

2n∑
i=0

g(∇eiW, ei) = ξh− ξα−Wµ.

Taking the inner product with Y to (4.15) and taking the skew-symmetric part, we
have

(4.17)

−2cg(ϕX, Y ) + 2g(AϕAX, Y )

= (Xα)η(Y )− (Y α)η(X) + αg((ϕA+Aϕ)X,Y )

+(Xµ)w(Y )− (Y µ)w(X)

+µ(g(∇XW,Y )− g(∇Y W,X)).

Replacing X by ξ in this and using (2.10) and (4.11), we have

(4.18) µ∇ξW = 3AU − αU +∇α− (ξα)ξ − (Wα)W.

Putting X = µW in (4.15) and taking account of (4.10), we get

−
(
α+

c

α

)
AU − c

α
(λ+ α)U + µ∇µ+ µAϕAW

= µ(Wα)ξ + µ(Wµ)W + µαϕAW + µ2∇WW,

or, using (3.5) and (4.2),

(4.19) µ2∇WW = −2
(
α+

c

α

)
AU−

(
µ2 +

2c

α
λ

)
U+µ∇µ−µ(Wα)ξ−µ(Wµ)W.
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Now, putting X = U in (4.17) and making use of (2.6) and (3.3), we have

µ(g(∇UW,Y )− g(∇Y W,U))

= (2cµ− Uµ)w(Y )− (Uα)η(Y )

+ µ2η(AY ) + 2λµw(AY )− 2µw(A2Y ),

which together with (4.3) gives

(4.20)
µdw(U, Y ) = (2cµ− Uµ)w(Y )− {Uα+ 2c(λ− α)}η(Y )

−{µ2 + 2(λ− α)g(AW,W )}η(AY ) + 2µ
(
λ+

c

α

)
w(AY ).

Because of (2.10) and (4.18), it is seen that

(4.21) µdw(ξ,X) = 2u(AX)− αu(X)− (ξα)η(X)− (Wα)w(X) +Xα.

Using (2.11) and (3.7), we obtain

(4.22) du(ξ,X) = (3λ− 2α)η(AX)− 2µw(AX)− αλη(X) + g(ϕ∇α,X).

Using above two equations, (3.13) is reduced to

(4.23)

g(∇XU, Y ) + g(∇Y U,X))

= 2c(g(X,Y )− η(X)η(Y ))− 2g(A2X,Y ) + 2αg(AX,Y )

+(ξτ)(u(X)w(Y ) + u(Y )w(X))

+
1

α
{2u(AX) +Xα− (ξα)η(X)− (Wα)w(X)}u(Y )

+
1

α
{2u(AY ) + Y α− (ξα)η(Y )− (Wα)w(Y )}u(X)

+{(3λ− 2α)η(AX)− 2µw(AX)

−αλη(X) + g(ϕ∇α,X)}(η(Y ) + τw(Y ))

+{(3λ− 2α)η(AY )− 2µw(AY )

−αλη(Y ) + g(ϕ∇α, Y )}(η(X) + τw(X)),

where we have used (4.21) and (4.22). Taking the trace of this and using (4.7), we
find

(4.24) divU = 2c(n− 1) + αh− TrA2 + λ(λ− α).

Replacing X by U in (4.23) and using (4.6) and (4.7), we find

g(∇UU, Y ) + g(∇Y U,U)

= (λ− α)(Y α) + 2
(
2λ− α+

c

α

)
u(AY )

+

{
Uα

α
+

2cλ

α
+ 2(λ− α)(g(AW,W ) + α− λ)

}
u(Y )

+ {µ(Wα)− (λ− α)ξα}η(Y ) + µ2(ξτ)w(Y ).
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Since g(∇XU,U) = µ(Xµ), it follows that

(4.25)

du(U,X) = −2µ(Xµ) + (λ− α)(Xα) + 2
(
2λ− α+

c

α

)
u(AX)

+

{
Uα

α
+

2cλ

α
+ 2(λ− α)(g(AW,W ) + α− λ)

}
u(X)

+{µ(Wα)− (λ− α)ξα}η(X) + µ2(ξτ)w(X),

which implies that

(4.26) du(U,W ) = −2µ(Wµ) + (λ− α)Wα+ µ2(ξτ).

Because of (2.1), (2.11) and (3.3), it is seen that

dη(U,X) = (λ− α)η(AX)− 2µw(AX).

Putting Z = U in (3.12) and using this and (2.4), we obtain

− 2µg((∇WA)Y,X)− 2c(η(Y )u(X) + η(X)u(Y ))

− du(U,X)(η(Y ) + τw(Y ))− du(U, Y )(η(X) + τw(X))

+ µ2((Xτ)w(Y ) + (Y τ)w(X))

− (Uτ)(u(X)w(Y ) + u(Y )w(X))

− {(λ− α)η(AX)− 2µw(AX)}u(Y )

− {(λ− α)η(AY )− 2µw(AY )}u(X)

+ µ2(g(∇Xξ, Y ) + g(∇Y ξ,X))

+ τ{µ2(g(∇XW,Y ) + g(∇Y W,X))

− dw(U, Y )u(X)− dw(U,X)u(Y )} = 0.

Substituting (4.20) into this, we obtain

2µg((∇WA)Y,X)

= −2c(η(Y )u(X) + η(X)u(Y ))− du(U,X)(η(Y ) + τw(Y ))

− du(U, Y )(η(X) + τw(X)) + µ2((Xτ)w(Y ) + (Y τ)w(X))

− (Uτ)(u(X)w(Y ) + u(Y )w(X))

− {(λ− α)η(AX)− 2µw(AX)}u(Y )

− {(λ− α)η(AY )− 2µw(AY )}u(X)

+ µ2(g(∇Xξ, Y ) + g(∇Y ξ,X))

+ τµ2(g(∇XW,Y ) + g(∇Y W,X))

− 1

α
u(X)

{
(2cµ− Uµ)w(Y )− (Uα+ 2c(λ− α))η(Y )

− {µ2 + 2(λ− α)g(AW,W )}η(AY ) + 2µ
(
λ+

c

α

)
w(AY )

}
− 1

α
u(Y )

{
(2cµ− Uµ)w(X)− {Uα+ 2c(λ− α)}η(X)

− {µ2 + 2(λ− α)g(AW,W )}η(AX) + 2µ
(
λ+

c

α

)
w(AX)

}
.
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Combining this to (4.12), we have

(4.27)

−2µ(Wα)g(AY,X)

+2η(AY )
{
−
(
α+

c

α

)
u(AX)− c

α
(α+ λ)u(X) + µXµ

}
+2

{
−
(
α+

c

α

)
u(AY )− c

α
(α+ λ)u(Y ) + µ(Y µ)

}
η(AX)

−2cµ

α
{u(AX)w(Y ) + u(AY )w(X)

+(λ− α)(w(X)u(Y ) + w(Y )u(X))}

= −2αc(η(Y )u(X) + η(X)u(Y ))− αdu(U,X)(η(Y ) + τw(Y ))

−αdu(U, Y )(η(X) + τw(X)) + αµ2((Xτ)w(Y ) + (Y τ)w(X))

−α(Uτ)(u(X)w(Y ) + u(Y )w(X))− µ2(η(AX)u(Y ) + η(AY )u(X))

+2αµ(w(AY )u(X) + w(AX)u(Y )) + αµ2(g(∇Xξ, Y ) + g(∇Y ξ,X))

+µ3(g(∇XW,Y ) + g(∇Y W,X))

−u(X)
{
(2cµ− Uµ)w(Y )− (Uα+ 2c(λ− α))η(Y )

−(µ2 + 2(λ− α)g(AW,W ))η(AY ) + 2µ
(
λ+

c

α

)
w(AY )

}
−u(Y )

{
(2cµ− Uµ)w(X)− (Uα+ 2c(λ− α))η(X)

−(µ2 + 2(λ− α)g(AW,W ))η(AX) + 2µ
(
λ+

c

α

)
w(AX)

}
.

If we put Y = W in (4.27) and take account of (2.1), (3.5) and (4.19), then we find

− 2µ(Wα)w(AX) + µ2(Xµ)

+ 2µ(Wµ)η(AX)− 2cµ

α
{u(AX) + (λ− α)u(X)}

= −µdu(U,X)− αdu(U,W )(η(X) + τw(X))

+ αµ2((Xτ) + (Wτ)w(X))

− µ2{(Wα)η(X) + (Wµ)w(X)}

+

(
Uµ− α(Uτ)− 2c

α
µg(AW,W )

)
u(X),

or, using (4.25) and (4.26)

2µ(Wα)AW − 2cµU + {µ(λ− α)ξα− 3µ2Wα− αµ2(ξτ)}ξ
− {µ2(Wµ) + τµ2(Wα) + 2µ3(ξτ)}W + µ2∇µ− µ(λ− α)∇α

− 2µ(2λ− α)AU − µ

{
Uα

α
+ 2(λ− α)g(AW,W )− 2(λ− α)2

}
U

+ αµ2((Wτ)W +∇τ) +

{
Uµ− α(Uτ)− 2cµ

α
g(AW,W )

}
U = 0.
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By the way, since ατ = µ, we find

(4.28) αµ∇τ = µ∇µ− (λ− α)∇α.

Using this, above equation is reduced to

(4.29)

µ∇µ− (λ− α)∇α

= (2λ− α)AU +
{(

λ− α+
c

α

)
g(AW,W )− (λ− α)2 + c

}
U

−(Wα)AW + {2µ(Wα)− (λ− α)ξα}ξ + (λ− α)(2Wα− τ(ξα))W.

If we take the inner product (4.29) with W , then we get

(4.30) µ(Wµ) = {3(λ− α)− g(AW,W )}Wα− τ(λ− α)ξα.

Also, taking the inner product (4.29) with U and making use of (4.7), we obtain

(4.31)
Uµ

µ
− Uα

α
=

(
3λ− 2α+

c

α

)
g(AW,W ) + (λ− α)(2α− 3λ) + c.

On the other hand, replacing Y by W in (4.23) and using (4.3) and (4.14), we
find

g(∇XU,W ) + g(ϕ∇µ,X)− λ− α

µ
g(ϕ∇α,X)

−(ξτ)u(X) + 2(λ− α)w(AX)

+

{
Uα

α
+ (λ− α)(5α− 6λ+ 4g(AW,W ))

}
w(X)

+

{
Uα

µ
+ µ(4α− 5λ+ 3g(AW,W ))

}
η(X) = 0.

By the way, applying (4.29) by ϕ and making use of (2.6), (3.3) and (3.5), we
get

µϕ∇µ− (λ− α)ϕ∇α

= − 1

µ
(Wα)AU + µ(ξτ)U + µ2(2λ− α)ξ − µ(2λ− α)AW

− µ
{(

λ− α+
c

α

)
g(AW,W )− (λ− α)(3λ− 2α) + c

}
W.
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Substituting this into the last equation, we find

(4.32)

g(∇XU,W )

=
Wα

µ2
u(AX) + αw(AX)

+

{
3(λ− α)2 +

c

α
g(AW,W ) + c

−Uα

α
− 3(λ− α)g(AW,W )

}
w(X)

+

{
3µ(λ− α− g(AW,W ))− Uα

µ

}
η(X).

On the other hand, (4.12) turns out, using (2.4), to be

α(∇XA)W

=
cα

µ
(η(X)U + 2u(X)ξ)− (Wα)AX

+
1

µ
η(AX)

{
µ∇µ−

(
α+

c

α

)
AU − c

α
(λ+ α)U

}
+

1

µ

{
µ(Xµ)−

(
α+

c

α

)
u(AX)− c

α
(λ+ α)u(X)

}
Aξ

− c

α
{w(X)AU + u(AX)W + (λ− α)(u(X)W + w(X)U)} .

If we apply by ϕ to this and make use of (3.3), then we find

(4.33)

−αϕ(∇XA)W = (Wα)ϕAX + cαη(X)W − (Xµ)U

+
1

µ
η(AX)

{(
α+

c

α

)
{(λ− α)Aξ − µAW} − c

α
µ(λ+ α)W − µϕ∇µ

}
+
1

µ

{(
α+

c

α

)
u(AX) +

2cλ

α
u(X)

}
U +

c

α
w(X)(µ2ξ − µAW ).

Now, if we put Z = W in (3.12), then we find

2g(ϕ(∇Y A)W,X)

= 2{(w(A2Y )− cw(Y ))η(X)− w(AY )η(AX)}
+ du(W,X)(η(Y ) + τw(Y )) + τdu(Y,X)

+ (Wτ)(w(Y )u(X) + w(X)u(Y ))

+ (g(∇WU, Y ) + g(∇Y U,W ))(η(X) + τw(X))

+
2

µ
{u(AX) + (λ− α)u(X)}u(Y )

+ (Y τ)u(X)− (Xτ)u(Y ) + τ(u(Y )g(∇WW,X)

+ u(X)g(∇WW,Y )).
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Using (2.1), (2.10), (3.5), (3.8) and (4.33), we can write the above equation as

µdu(X,Y )

= (Wα)g((ϕA+Aϕ)X,Y ) +
2c

α
µ(w(X)w(AY )− w(Y )w(AX))

+ η(AX)g(ϕ∇µ, Y )− η(AY )g(ϕ∇µ,X)

+
2c

µα
(u(X)u(AY )− u(Y )u(AX))− (Xµ)u(Y ) + (Y µ)u(X)

+ α((Xτ)u(Y )− (Y τ)u(X))

+ g(∇Y U,W )η(AX)− g(∇XU,W )η(AY )

+ {2cα− 2cλ− µ2(α+ g(AW,W ))}(η(X)w(Y )− η(Y )w(X)),

which together with (4.28) and (4.32) yields

(4.34)

µdu(X,Y )

= (Wα)g((ϕA+Aϕ)X,Y ) +
2cµ

α
{w(X)w(AY )− w(Y )w(AX)}

+
Wα

µ2
{η(AX)u(AY )− η(AY )u(AX)}

+η(AX)g(ϕ∇µ, Y )− η(AY )g(ϕ∇µ,X)

+α{η(AX)w(AY )− η(AY )w(AX)}

+
2c

µα
(u(X)u(AY )− u(Y )u(AX)) +

µ

α
((Xα)u(Y )− (Y α)u(X))

+{(µ2 + c)g(AW,W ) + αµ2 − cα+ 2cλ}(η(X)w(Y )− η(Y )w(X)).

Putting X = ϕei and Y = ei in this and summing up for i = 1, 2, · · · , n, we obtain

µ
2n∑
i=0

du(ϕei, ei) = (h− α− g(AW,W ))Wα− µ(Wµ),

where we have used (2.6)–(2.8), (3.5) and (4.7). Taking the trace of (2.12), we
obtain

2n∑
i=0

g(ϕ∇eiU, ei) = ξα− ξh.

Thus, it follows that

(4.35) µ(ξh− ξα) = µ(Wµ) + (g(AW,W ) + α− h)Wα,

which together with (4.16) gives

(4.36) µ2(divW ) = (g(AW,W ) + α− h)Wα.
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We notice here that

Remark 4.1. If AU = ρU for some function ρ on Ω, then AW ∈ span{ξ,W} on
Ω, where span{ξ,W} is a linear subspace spanned by ξ and W .

In fact, because of the hypothesis AU = ρU , (3.5) reformed as

µϕAW = (ρ+ λ− α)U,

which implies that AW = µξ + (ρ+ λ− α)W ∈ span{ξ,W}.

In the previous paper [6], it is proved that

Lemma 4.2. Let M be a real hypersurface of Mn(c), c ̸= 0 which satisfies Rξϕ =
ϕRξ and ∇ϕ∇ξξRξ = 0. If AW ∈ span{ξ,W}, then Ω = ∅.
The sketch of proof. Since AW ∈ span{ξ,W}, (3.5) becomes

(4.37) AU = (g(AW,W ) + α− λ)U.

From (4.2) we also have

g(AW,W )(αAU + cU) = 0.

Now, suppose that g(AW,W ) ̸= 0 on Ω. Then we have αAU + cU = 0 on this
subset, which together with (4.37) gives

µ2 = αg(AW,W ) + c.

Because of (2.6), (2.16) and this fact, we verified that RξAξ = 0 on the subset,
which together with (3.1) and the fact αAU + cU = 0 implies that

Rξ(ϕA−Aϕ) = 0.

Owing to Theorem 1.1, we conclude that Aξ = αξ, a contradiction. Therefore we
see that g(AW,W ) = 0 on Ω. So we have

(4.38) AW = µξ.

Hence (4.37) reformed as

(4.39) AU = (α− λ)U.

Differentiating (4.38) covariantly, we find

(∇XA)W +A∇XW = (Xµ)ξ + µ∇Xξ,

which together with (2.4), (2.10) and (4.39) gives

(4.40) (∇WA)W = 2(λ− α)U.
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Using this, (4.38) and (4.39), we can write (4.13) as

(4.41) µ(Xµ) = µ(Wα)η(X) + (µ2 + 2c)u(X).

Differentiating this covariantly and taking account of (2.1) and (2.4), we find

(4.42)

Y (µ(Wα))η(X)−X(µ(Wα))η(Y )

+(µ(Wα))g((ϕA+Aϕ)Y,X)

+2µ(Wα)(η(Y )u(X)− η(X)u(Y ))

+(µ2 + 2c)(g(∇Y U,X)− g(∇XU, Y )) = 0,

which together with (2.8), (2.10), (4.34), (4.38), (4.39) and (4.40) implies that
Wα = 0. Thus, (4.41) and (4.42) becomes respectively to

µ∇µ = (µ2 + 2c)U,(4.43)

(µ2 + 2c)(g(∇Y U,X)− g(∇XU, Y )) = 0.(4.44)

Using (4.38), (4.39) and these, we see from (4.34) that (µ2 +2c)(µ2 + c) = 0, which
shows that µ2 + 2c = 0 on Ω. Therefore, (4.29) can be written as

µ2∇α = {µ2(3λ− 2α)− cα}U,

where we have used (4.38), (4.39) and the face that µ is constant on Ω.
As in the same method as those used from (4.41) to derive (4.44), we can deduce

from the last equation that

{µ2(3λ− α)− cα}(g(∇Y U,X)− g(∇XU, Y )) = 0.

If g(∇Y U,X)−g(∇XU, Y ) = 0, then similarly as above we have a contradiction.
Hence we see that µ2(3λ − 2α) − cα = 0, which together with µ2 + 2c = 0 yields
2λ− α = 0. that is, 2µ2 + α2 = 0, a contradiction. This completes the proof. 2

5. Constant Mean Curvature

We will continue our discussions under the same hypotheses as those stated
in Section 4. Further we assume that mean curvature of the hypersurface M in
Mn(c), c ̸= 0 is constant. Then h is constant. So (4.35) becomes

(5.1) µ(ξα+Wµ) = (h− α− g(AW,W ))Wα.

Taking the trace of (4.12), we also have h(Wα) − 2g(Aξ,∇µ) = 0, which together
with (2.6) and (4.11) gives

(5.2) 2µ(Wµ) = (h− 2α)Wα.

Combining the last two equations, we obtain

(5.3) µ(ξα) =

(
h

2
− g(AW,W )

)
Wα.
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From (3.2) we have

(5.4) 2µ(∇µ) = α(∇λ) + (λ− 2α)∇α,

which tells us that 2µ(Wα) = α(ξλ)+ (λ−2α)ξα, which connected to (5.3) implies
that

(5.5) αµ(ξλ) =

{
2αλ− 2α2 − h

2
λ+ (λ− 2α)g(AW,W )

}
Wα.

Combining (4.30) to (5.2) and (5.3), we get

(5.6)

{
(2α− λ)g(AW,W )− 3αλ+ 2α2 +

hλ

α

}
Wα = 0.

On the other hand, putting X = Y = ei in (3.12) and summing up for i =
0, 1, · · · , 2n and using (2.1) and (2.4), we find

ϕ∇α+ {2c(n− 1)− TrA2}η(Z) + hη(AZ)

= g(∇ξU,Z)− g(∇ZU, ξ) + τ(g(∇WU,Z) + g(∇UW,Z))

+ (divU)(η(Z) + τw(Z)) + g((ϕA+Aϕ)U,Z)

+ (Wτ)u(Z) + (Uτ)w(Z) + τ(divW )u(Z),

where we have used h is constant, or using (2.10), (3.3), (3.7) and (4.24)

(5.7)

ϕ∇α+
µ

α
(∇WU +∇UW )− 4µAW + (Wτ + τ(divW ))U

+(Uτ + τ(divU) + µ(4λ− 3α− h))W

+(λ− α)(λ+ 3α)ξ = 0.

By the way, combining (4.20) to (4.33) and taking account of (4.32), we find

∇UW =
1

µ
{µϕ∇µ− (λ− α)ϕ∇α} − (ξτ)U + 2

(
2λ− α+

c

α

)
AW

+
{
(λ− α)(2α− 3λ) + c−

(
λ+

c

α

)
g(AW,W )

}
W

+ µ

{
g(AW,W ) + 3α− 5λ− 2c

α

}
ξ.

Substituting this and (4.14) into (5.7), we obtain

αϕ∇α+ 2µϕ∇µ− (λ− α)ϕ∇α

= 4µ
(
α− λ− c

α

)
AW + (µ(ξτ)− α(Wτ)− µ(divW ))U

− 4(λ− α)(µ2 + c)ξ − τfW
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for some function f on Ω. Because of (4.28), (4.36), (5.2) and (5.3), it is verified
that

µ (µ(ξτ)− α(Wτ)− µ(divW )) = (h− λ)Wα.

From this and (5.4), above equation can be written as

(5.8) α2ϕ∇λ = −4µ(µ2 + c)(AW − µξ) +
α

µ
(h− λ)(Wα)U − µfW,

which together with (3.5) implies that

(5.9) α2(∇λ− (ξλ)ξ) = 4(µ2 + c){AU + (λ− α)U}+ α(h− λ)(Wα)W + fU.

Differentiation (4.4) with respect to W gives

(5.10)
αW (g(A2W,W )) = (µ2 − g(A2W,W ))Wα

+2µ(α+ g(AW,W ))Wµ+ (µ2 − c)W (g(AW,W )).

By the definition of g(AW,W ), differentiation g(AW,W ) with respect to X gives

αX(g(AW,W )) = αg((∇WA)W,X) + 2αg(∇XW,AW ),

which together with (4.13) yields

(5.11)
αX(g(AW,W )) = −(Wα)w(AX) + (Wµ)η(AX)−

(
α+

2c

α

)
u(AX)

−2c

α
λu(X) + µ(Xµ) + 2αg(∇XW,AW ).

Replacing X by W in this and making use of (4.19), we find

W (g(AW,W )) = −
(
2 +

1

α
g(AW,W )

)
Wα+

2

µ
g(AW,∇µ)

+2µ

(
1

α
− g(AW,W )

µ2

)
Wµ,

which together with (5.10) implies that

(5.12)

1

2
αW (g(A2W,W )) =

{(
α− λ+

c

α

)
g(AW,W ) + c− µ2

}
Wα

+µ

(
λ− c

α
+

c

µ2
g(AW,W )

)
Wµ

+

(
µ− c

µ

)
g(AW,∇µ).

On the other hand, by the definition g(A2W,W ), we find

1

2
αX(g(A2W,W )) = αg((∇XA)W,AW ) + αg(A2W,∇XW )
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for any vector field X. Putting X = W in this and making use of (4.3), (4.12) and
(4.19), we obtain

1

2
αW (g(A2W,W ))

= (c− g(A2W,W ))Wα

+ µ

(
α+ g(AW,W ) +

c

µ2
g(AW,W )

)
Wµ

+

(
µ− c

µ

)
g(AW,∇µ),

which connected to (5.12) yields{
g(A2W,W )−

(
λ− α− c

α

)
g(AW,W )− µ2

}
Wα

+ µ
(
λ− α− c

α
− g(AW,W )

)
Wµ = 0.

Because of (4.5), it follows that

(µ2 − c− αg(AW,W ))Wµ = 0.

Now, if we assume that Wµ ̸= 0 on Ω, then we get αg(AW,W ) = µ2− c on this
subset, which together with (4.5) gives

g(A2W,W ) = µ2 + (g(AW,W ))2

on the subset. Using these facts, it is verified that

||AW − µξ − g(AW,W )W || = 0

on the set. Consequently we have AW = µξ + g(AW,W )W on the subset. It is
contradictory because of Lemma 4.2. Therefore we see that Wµ = 0 on Ω. Thus,
(5.2) becomes (h − 2α)Wα = 0 and hence Wα = 0 because of h is constant.
Therefore it is clear that ξα = 0 and ξλ = 0 by virtue of (5.2) and (5.5).

Summing up, we conclude that

Lemma 5.1. ξα = Wα = ξµ = Wµ = ξλ = Wλ = 0 on Ω provided that the mean
curvature of M is constant.

According to Lemma 5.1, (4.29) and (5.9) reduced respectively to

(5.13)
µ∇µ− (λ− α)∇α

= (2λ− α)AU +
{(

λ− α+
c

α

)
g(AW,W )− (λ− α)2 + c

}
U,

(5.14) α2∇λ = 4(µ2 + c)AU + f1U,
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where we have put f1 = f +4(λ−α)(µ2+ c). Combining (5.13) and (5.14) to (5.4),
we find

(5.15) αλ∇α+ 2(α2 − 2c)AU = f2U,

where we have put

f2 = f1 − 2(µ2 + c)g(AW,W ) + 2α(λ− α)2 − 2cα.

From (5.15) we see that g(AW,∇α) = 0 and hence g(AW,∇µ) = 0 by virtue of
(5.13). Replacing X by ξ in (5.11) and taking account of g(AW,∇α) = 0 and
(4.18), it is verified that

(5.16) ξ(g(AW,W )) = 0,

where we have used Lemma 5.1. Similarly we see from (4.19) and (5.11) that

(5.17) W (g(AW,W )) = 0.

Applying (5.15) by ϕ and using (2.6), (2.8) and (3.3), we find

αλϕ∇α = 2µ(α2 − 2c)AW − 2α(λ− α)(α2 − 2c)Aξ − µf2W.

From this and (3.7), we get

(5.18)

αλ∇ξU = µ(2α2 − 3αλ− 4c)AW

+{3αλ2 − 4α2λ+ 2α3 + 4c(λ− α)}Aξ

−(αλ)2ξ − µf2W.

On the other hand, if we combine (5.13) to (5.14), then we have

(5.19) α2(2λ− α)Xλ− 4µ(µ2 + c)Xµ+ 4(λ− α)(µ2 + c)Xα = f3u(X)

for any vector field X, where we have put

(5.20) f3 = (2λ− α)f1 − 4(µ2 + c)
{(

λ− α+
c

α

)
g(AW,W )− (λ− α)2 + c

}
.

Differentiating (5.19) covariantly with respect to a vector field Y , and taking the
skew-symmetric part, we find

f4((Xα)(Y λ)− (Y α)(Xλ))

+ (Y f3)u(X)− (Xf3)u(Y ) + f3(g(∇Y U,X)− g(∇XU, Y )) = 0

for some function f4. Replacing X by ξ in this and using (2.11) and Lemma 5.1,
we obtain

(ξf3)u(Y ) + f3(µw(AY ) + g(∇ξU, Y )) = 0,
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which tells us that ξf3 = 0 by virtue of Lemma 5.1. Therefore, above equation
implies that f3(µ

2 + 2c)AW ∈ span{ξ,W} by virtue of (5.18). Owing to Lemma
5.1, it is clear that (µ2 + 2c)f3 = 0.

We are now going to prove f3 = 0 on Ω. If not, then we have µ2 + 2c = 0 on
this subset and hence µ is constant. So (5.13) reformed as

2c∇α = (α2 − 4c)AU + c(2λ− α− g(AW,W ))U.

From (5.15) we also have

(α2 − 2c)(∇α+ 2AU) = f2U.

Combining the last two equations, it follows that (α2 − 2c)AU = xU for some
function x. Owing to Lemma 4.2 and Remark 4.1, we see that α2 − 2c = 0, a
contradiction because of µ2 + 2c = 0. Accordingly we prove that f3 = 0 and
consequently it is seen that

(5.21) (2λ− α)f1 = 4(µ2 + c)
{(

λ− α+
c

α

)
g(AW,W )− (λ− α)2 + c

}
,

because of (5.20). Using f3 = 0 and (5.4), we can write (5.19) as

(5.22) α(α2 − 2c)∇λ+ 2λ(µ2 + c)∇α = 0.

By the definition of f2 and (5.21), it is verified that

(5.23) α(α− 2λ)f2 = 2(α2 − 2c)
{(

µ2 + c
)
g(AW,W )− α(λ− α)2 + cα

}
.

Finally we prepare the following lemma for later use.

Lemma 5.2. Let span{ξ,W} be the linear subspace spanned by ξ and W . Then
there exists P ∈ span{ξ,W} such that

g(AW,∇XU) =
c

α
w(A2X)−

{
µ2 +

(
λ− α+

c

α

)
g(AW,W )

}
w(AX)

+ g(P,X)

provided that h is constant.

Proof. Putting Y = AW in (4.34) and using (3.5), (4.3), (5.15) and Lemma 5.1, we
find

µdu(X,AW )

=
2c

α
µ{g(A2W,W )w(X)− g(AW,W )w(AX)}

+ η(AX)g(ϕ∇µ,AW )− µ(α+ g(AW,W ))g(ϕ∇µ,X)

+ α{g(A2W,W )η(AX)− µ(α+ g(AW,W ))w(AX)}
+ {(µ2 + c)g(AW,W ) + αµ2 − cα+ 2cλ}(g(AW,W )η(X)− µw(X)),
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which enables us to obtain

g(AW,∇XU)− g(∇AWU,X)

= −α

(
α+ g(AW,W ) +

2c

α2
g(AW,W )

)
w(AX)

− (α+ g(AW,W ))g(ϕ∇µ,X) + g(P1, X)

for some P1 ∈ span{ξ,W}. If we replace X by AW in (4.23) and make use of (3.5),
(4.3), (5.15) and Lemma 5.1, then we get

g(∇XU,AW ) + g(∇AWU,X)

= 2cw(AX) + 2αw(A2X)− 2w(A3X)

+
(
µ+

µ

α
g(AW,W )

)
{(3λ− 2α)η(AX)− 2µw(AX)

−αλη(X) + g(ϕ∇α,X)}

+

{
µ(3λ− 2α)(α+ g(AW,W ))− 2µg(AW,W )− αλµ

− 1

µ
g(AU + (λ− α)U,∇α)

}
(η(X) + τw(X))− 2cµη(X),

which shows that

g(∇XU,AW ) + g(∇AWU,X)

= −2w(A3X) + 2αw(A2X) + 2cw(AX)

− 2(λ− α)(α+ g(AW,W ))w(AX)

+
µ

α
(α+ g(AW,W ))g(ϕ∇α,X) + g(P2, X)

for some P2 ∈ span{ξ,W}. Adding to the last two equations, we obtain

2g(AW,∇XU) =− 2w(A3X) + 2αw(A2X) + 2cw(AX)

− 2(λ− α)(α+ g(AW,W ))w(AX)

− α

(
α+ g(AW,W ) +

2c

α2
g(AW,W )

)
w(AX)

− (α+ g(AW,W ))
(
ϕ∇µ− µ

α
ϕ∇α

)
+ g(P3, X)

for some P3 ∈ span{ξ,W}.
By the way, applying (5.13) by ϕ, and using (2.8) and (3.3), we find

(5.24) ϕ∇µ− µ

α
ϕ∇α = (2λ− α){−AW + µξ + (λ− α)W} − εW,
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where we have put

(5.25) ε =
(
λ− α+

c

α

)
g(AW,W )− (λ− α)2 + c.

Because of (4.3), we have

A3W =− c

α
A2W + (λ− α)(α+ g(AW,W ))AW

+ µ
(
α+

c

α
+ g(AW,W )

)
Aξ.

Combining the last three equations, we obtain

g(AW,∇XU)

=
c

α
w(A2X)−

{
µ2 +

(
λ− α+

c

α

)
g(AW,W )

}
w(AX) + g(P4, X)

for some P4 ∈ span{ξ,W}. The completes the proof. 2

6. Proof of the Main Theorem

We will continue our discussions under the same hypotheses as those stated in
Section 5. Because of (5.13) and (5.25), we have

(6.1) µ(Xµ)− (λ− α)Xα = (2λ− α)u(AX) + εu(X)

for any vector field X. Differentiating this covariantly with respect to a vector field
Y and taking the skew-symmetric part, we find

(6.2)

(Xλ)(Y α)− (Y λ)(Xα)

= (2Y λ− Y α)u(AX)− (2Xλ−Xα)u(AY )

+cµ(2λ− α)(η(Y )w(X)− η(X)w(Y ))

+(2λ− α)(g(A∇Y U,X)− g(A∇XU, Y ))

+(Y ε)u(X)− (Xε)u(Y ) + ε(g(∇Y U,X)− g(∇XU, Y )),

where we have used (2.4) and (2.8). From (5.16), (5.25) and Lemma 5.1, we have
ξε = 0. If we put Y = ξ in (6.2) and make use of (2.6) and ξε = 0, we find

cµ(2λ− α)w(X)− (2λ− α)(g(αξ + µW,∇XU)− g(∇ξU,AX))

− ε(g(∇XU, ξ) + g(∇ξU,X)) = 0,

where we have used Lemma 5.1, or using (2.11) and (4.32),

(6.3) (2λ− α)A∇ξU + ε∇ξU + µεAW ∈ span{ξ,W}.
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From (5.17), (5.24) and Lemma 5.1, we have Wε = 0. Putting Y = W in (6.2) and
using Lemma 5.1 and Wε = 0, we obtain

(6.4)
(2λ− α)(g(∇XU,AW )− g(A∇WU,X) + cµη(X))

+ε(g(∇XU,W )− g(∇WU,X)) = 0.

By the way, putting Y = W in (4.34), we have

g(∇XU,W )− g(∇WU,X)

= −
(
α+

2c

α

)
w(AX)− g(ϕ∇µ,X) + g(P5, X)

for some P5 ∈ span{ξ,W}, which together with Lemma 5.2 and (6.3) implies that

(2λ− α)
{ c

α
A2W −

(
µ2 +

(
λ− α+

c

α

)
g(AW,W )

)
AW −A∇WU

}
− ε

{(
α+

2c

α

)
AW + ϕ∇µ

}
∈ span{ξ,W}.

It follows from this and (4.3) and (4.14) that

(2λ− α)Aϕ∇µ+ εϕ∇µ

+ (2λ− α)
{ c

α
A2W +

(
λ− α+

c

α

)
g(AW,W )AW

}
+ ε

(
α+

2c

α

)
AW ∈ span{ξ,W}.

On the other hand, applying (5.23) by A, we find

Aϕ∇µ =
µ

α
Aϕ∇α− (2λ− α){A2W − µAξ − (λ− α)AW} − εAW.

Substituting this into the last equation, we obtain

(6.5)

µ

α
(2λ− α)Aϕ∇µ+ εϕ∇µ+ (2λ− α)

c

α
A2W

+

{
(2λ− α)2

(
λ− α+

c

α

)
+(2λ− α)((λ− α)2 − c) + ε

(
α+

2c

α

)}
AW ∈ span{ξ,W}.

In the next place we have from (3.7)

(6.6) A∇ξU = µ(3λ− 2α)AW − 3µA2W + 2µ2Aξ +Aϕ∇α,

which together with (6.3) implies that

2λ− α

µ
Aϕ∇α+

ε

µ
ϕ∇α− 2εAW

− (2λ− α){3A2W + (2α− 3λ)AW} ∈ span{ξ,W}.
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Combining this to (6.5), we obtain

ε
(
ϕ∇µ− µ

α
ϕ∇α

)
+ ε

(
2λ− α+

2c

α

)
AW

+ (λ− α)(2λ− α)(3A2W + (2α− 3λ)AW )

+ (2λ− α)
{
(2λ− α)

(
λ− α+

c

α

)
+ (λ− α)2 − c

}
AW

+
c

α
(2λ− α)A2W ∈ span{ξ,W},

which together with (4.3) and (5.24) implies that

{2εα− (2λ− α)(µ2 + c)}AW ∈ span{ξ,W},

Because of Lemma 4.2, it follows that 2αε = (2λ − α)(µ2 + c). Thus, it is, using
(5.23) and (5.24), verified that

(6.7) αf2 + (α2 − 2c)(µ2 + c) = 0

by virtue of 2λ− α ̸= 0 on Ω.
Using same method as that used to derive (6.2) from (6.1), we can deduce from

(5.15) that

(6.8) 2(α2 − 2c)A∇ξU − f2(∇ξU + µAW ) ∈ span{ξ,W},

where we have used (2.4), (2.11), (4.3), (4.32), (5.23) and Lemma 5.1.
By the way we see from (5.18) that

αλA∇ξU − µ

{
3αλ2 − 4α2λ+ 2α3

+ c(7λ− 6α) +
4c2

α
− f2

}
AW ∈ span{ξ,W},

because of (4.3). Substituting this into (6.8) and taking account of (5.18), we obtain{
(α2 − 2c)(3α2λ2 − 4α3λ+ 2α4 + c(7αλ− 6α2) + 4c2)

−αf2(2α
2 − αλ− 4c)

}
AW ∈ span{ξ,W}.

According to Lemma 4.2, we verify that

(6.9) (α2 − 2c){3α2λ2 − 4α3λ+2α4 + c(7αλ− 6α2) + 4c2} = αf2(2α
2 −αλ− 4c),

which together with (6.7) yields (α2 − 2c)(α2 − 2c− 2αλ) = 0.
If α2 − 2c ̸= 0, then we have α2 − 2αλ − 2c = 0 on this subset, which shows

that α∇λ = (α − λ)∇α. Thus, (5.22) reformed as λ∇α = 0 and hence ∇α = 0
on the subset. Accordingly, using Remark 4.1 and Lemma 4.2, it is contradictory.
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Hence it is verified that α2−2c = 0 on Ω, which tells us that α is constant. So (3.2)
becomes µ2 = αλ− 2c, which implies that 2µ∇µ = α∇λ. Thus, (6.1) reformed as

α

2
∇λ = (2λ− α)AU + εU,

which together with 2αε = (2λ− α)(µ2 + c) and α2 = 2c implies that

2c

2λ− α
∇λ = 2αAU + (µ2 + c)U,

because 2λ− α ̸= 0 on Ω. Therefore, it is clear that

2c

2λ− α
∇λ = 2αAU + (αλ− c)U.

Using the same method as that used to derive (5.3) from (5.4), we can deduce from
this that

2αA∇ξU + (αλ− c)∇ξU + µ(αλ− c)AW ∈ span{ξ,W},

which together with (4.3), (5.18), (6.6) and the fact that α2 = 2c implies that

αλAW ∈ span{ξ,W},

Because of Lemma 4.2, we see that αλ = 0. This is not compatible with (3.2).
It is contradictory. Hence, we conclude that Ω = ∅, that is, Aξ = αξ on M .
Consequently we verify that RξS = SRξ because of (2.18). Therefore from Theorem
1.2 ([10]) M is homogeneous real hypersurfaces of Type A.

Let M be of Type A. Then M always satisfies ∇ϕ∇ξξRξ = 0 and mean curvature
is constant. From (2.16), it is easy to see that ϕRξ = Rξϕ.

Consequently we conclude that

Theorem 6.1. Let M be a real hypersurface with constant mean curvature of a
complex space form Mn(c), c ̸= 0, n ≥ 3 which satisfies ∇ϕ∇ξξRξ = 0. Then M holds
ϕRξ = Rξϕ if and only if Aξ = 0 or M is locally congruent to one of following:

(I) In cases that Mn(c) = PnC with η(Aξ) ̸= 0,

(A1) a geodesic hypersphere of radius r, where 0 < r < π/2 and r ̸= π/4;

(A2) a tube of radius r over a totally geodesic PkC for some k ∈ {1, . . . , n−2},
where 0 < r < π/2 and r ̸= π/4.

(II) In cases Mn(c) = HnC,

(A0) a horosphere;

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
Hn−1C;

(A2) a tube over a totally geodesic HkC for some k ∈ {1, . . . , n− 2}.
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