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ON THE STABILITY OF SPACELIKE HYPERSURFACES

WITH HIGHER ORDER MEAN CURVATURE IN

A DE SITTER SPACE

Shicheng Zhang

Abstract. The closed spacelike hypersurfaces with higher order mean
curvature is discussed in a de Sitter space. The hypersurface is proved
stable if and only if it is totally umbilical.

1. Introduction

As we all know, the hypersurfaces with constant mean curvature or con-
stant scalar curvature in real space forms are characterized as critical points of
the area functional for volume-preserving variations. Many results have been
achieved about hypersurfaces with constant mean curvature or constant scalar
curvature in a unit sphere Sn+1(1) [1, 2, 3]. Among these results, the geodesic
sphere is the only stable compact hypersurface with constant mean curvature
in a sphere as in [3]. After that, the closed hypersurfaces with higher order
mean curvature immersed in a Riemannian space form are studied and similar
results are obtained by other researches [4, 8, 12].

Achievements are not only obtained in Riemannian space, in fact, many re-
searches are also conducted in Lorentzian spaces. Constant mean curvature
spacelike hypersurfaces are solutions to a variational problems. Actually, they
are the critical points of the area functional for variations that leave constant
a certain volume function. In this sense, Barbosa and Oliker [5] computed the
second variation formula and obtained in the de Sitter space Sn+1

1 that spheres
maximize the area functional for volume-preserving variations, which is consis-
tent with the definition of stability. Later, researches of [6, 11], they obtained
an extension of the result in [5] for spacelike hypersurfaces with constant scalar
curvature, respectively.

Motivated by works [7, 9], The stability of closed spacelike hypersurfaces in
a de Sitter space Sn+1

1 is considered in this paper. This concept arises from
considering the variational problem of minimizing a suitable linear combination
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of the 2nd area for volume-preserving variations. Therefore, the purpose of this
paper is to prove that a closed spacelike hypersurface in the de Sitter space Sn+1

1

is stable if and only if it is totally umbilical. Precisely, the following result is
to be obtained.

Theorem 1.1. Let M be a closed orientable hypersurface in de Sitter space

Sn+1
1 satisfying brHr+1−anH = b for some constants a ≤ 0 and b. By choosing

the suitable orientation, we assume that H > 0. Then M is stable if and only

if M is totally umbilical. Where br = (n− r)
(

n
r

)

and 1 ≤ r ≤ n− 1.

When r = 1, we have:

Corollary 1.1. Let M be a closed orientable hypersurface in de Sitter space

Sn+1
1 satisfying (n − 1)H2 − aH = b for some constants a ≤ 0 and b. By

choosing the suitable orientation, we assume that H > 0. Then M is stable if

and only if M is totally umbilical.

When a = 0, we have the Corollary 1.2 in [7]:

Corollary 1.2. Let M be a closed orientable hypersurface with constant higher

order mean curvature in de Sitter space Sn+1
1 and Hr > 0. Then M is stable

if and only if M is totally umbilical.

When r = 1 and a = 0, we have the main theorem in [11]:

Corollary 1.3. Let M be a closed orientable hypersurface with constant scalar

curvature in de Sitter space Sn+1
1 . Then M is stable if and only if M is totally

umbilical.

Remark 1.1. Comparing with the main theorem in [5, 11], we withdraw the
constant mean curvature or constant scalar curvature and obtain the same
result.

2. Preliminaries

For what follows, we recall that the (n+2)-dimensional Lorentz-Minkowski
space R

n+2
1 is the real vector space R

n+2 endowed with the Lorentz metric

〈ν, ω〉 = −ν0ω0 +

n+1
∑

i=1

νiωi

for all ν, ω ∈ R
n+2. The (n+ 1)-dimensional de Sitter space Sn+1

1 is given by

Sn+1
1 = {p ∈ Rn+2

1 : 〈p, p〉 = 1}.

The induced metric from 〈, 〉 makes Sn+1
1 into a Lorentz manifold with constant

sectional curvature one. Moreover, if p ∈ Sn+1
1 , we can put

Tp(S
n+1
1 ) = {ν ∈ Rn+2

1 : 〈ν, p〉 = 0}.
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A smooth immersion x : M → Sn+1
1 →֒ R

n+2
1 of an n-dimensional connected

manifold M is said to be a spacelike hypersurface if the induced metric via x
is a Riemannian metric on M , which, as usual, is also denoted by 〈, 〉.

Observe that en+1 = {0, . . . , 0, 1} is a unit timelike vector field globally
defined on R

n+2
1 , which determines a time-orientation on R

n+2
1 . Thus we can

choose a unique timelike unit normal field N on M which is past-directed on
R

n+2
1 (i.e., 〈N, en+1〉 > 0), and hence we may assume that M is oriented by N .
Let x : M → Sn+1

1 →֒ R
n+2
1 be an immersed spacelike hypersurface in de

Sitter Sn+1
1 , and let N be its past-directed timelike normal field. In order to set

up the notation, we will denote by ∇0, ∇ and ∇ the Levi-Civita connections
of Rn+2

1 , Sn+1
1 and M , respectively. Then the Gauss and Weingarten formulae

for M in Sn+1
1 →֒ R

n+2
1 are given respectively by

∇0
V W = ∇V W − 〈V,W 〉x

= ∇V W − 〈AV,W 〉N − 〈V,W 〉x,

and

A(V ) = −∇0
V N = −∇V N

for all tangent vector fields V,W ∈ X (M), where A stands for the shape oper-
ator of M in Sn+1

1 associated with N .
At each p ∈ M , A restricts to a self-adjoint linear map Ap : TpM → TpM .

For 1 ≤ r ≤ n, let Sr(p) denote the r-th elementary symmetric function on the
eigenvalues of Ap, in this way one gets n smooth functions Sr : M → R, such
that

det(tI −A) =

n
∑

k=0

(−1)kSkt
n−k,

where S0 = 1 by definition. If p ∈ M and {ek} is a basis of TpM formed by
eigenvectors of Ap, corresponding with eigenvalues {λk}, one immediately sees
that

Sr = σr(λ1, . . . , λn),

where σr ∈ R[X1, . . . , Xn] is the r-th elementary symmetric polynomial on the
indeterminates X1, . . . , Xn.

For 1 ≤ r ≤ n, one defines the r-th mean curvature Hr of x by
(

n

r

)

Hr = (−1)rSr = σr(−λ1, . . . ,−λn).

In particular, for r = 1,

H1 =
1

n

n
∑

k=1

λk = H

is the mean curvature of M , which is the main extrinsic curvature of the hyper-
surface. When r = 2, H2 defines a geometric quantity which is related to the
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(intrinsic) normalized scalar curvature R of the hypersurface. More precisely,
it follows from the Gauss equation that

R = 1 +H2.

On the other hand, with a straightforward computation we verify that

|A|2 = n2H2 − n(n− 1)H2,

where |A|2 denotes the squared norm of the shape operator of M .
We also define, for 0 ≤ r ≤ n, the r-th Newton transformation Pr on M by

setting P0 = I (the identity operator) and, for 1 ≤ r ≤ n, via the recurrence
relation

Pr = (−1)rSrI −APr−1.

A trivial induction shows that

Pr = (−1)r(SrI − Sr−1A+ Sr−2A
2 − · · ·+ (−1)rAr),

so Pn = 0 is obtained from the Cayley-Hamilton theorem. Moreover, since Pr

is a polynomial in A for every r, it is also self-adjoint and commutes with A.
Therefore, all bases of TpM diagonalizing A at p ∈ TpM also diagonalize all of
the Pr at p. Let {ek} be such a basis. Denoting by Ai the restriction of A to
〈ei〉

⊥ ⊂ TpΣ, it is easy to see that

det(tI −Ai) =

n
∑

k=0

(−1)kSk(Ai)t
n−k,

where

Sk(Ai) =
∑

1≤j1<···<jk≤n

j1,...,jk 6=i

λj1 · · ·λjk .

With the above notation, it is also immediately checked that

Prei = (−1)rSr(Ai)ei,

and hence (Lemma 2.1 of [4]):

Lemma 2.1. For each 1 ≤ r ≤ n− 1
(a) Sr(Ai) = Sr − λiSr−1(Ai);
(b) tr(Pr) = (−1)r

∑n
i=1 Sr(Ai) = (−1)r(n− r)Sr = brHr;

(c) tr(APr) = (−1)r
∑n

i=1 λiSr(Ai) = (−1)r(r + 1)Sr+1 = −brHr+1;
(d) tr(A2Pr) = (−1)r

∑n
i=1 λ

2
iSr(Ai) = (−1)r(S1Sr+1 − (r + 2)Sr+2),

where br = (n− r)
(

n
r

)

.

Associated with each Newton transformation Pr, one has the second-order
linear differential operator Lr : C

∞(M) → C∞(M), given by

Lr(f) = tr(PrHessf).
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We remark that L0 is the Laplacian operator ∆ and L1 is the Cheng-Yau’s
square operator ✷ defined in [10]. According to [13], Pr is a divergence-free
whenever Sn+1

1 is of constant sectional curvature; consequently,

Lr(f) = div(Pr∇f).(2.1)

Useful consequences of (2.1) are given in the following

Proposition 2.1. If M is a closed Riemannian manifold or if M is a non-

compact Riemannian manifold and f has compact support, then
∫

M

Lr(f)dM = 0,

∫

M

fLr(f)dM = −

∫

M

〈Pr∇f,∇f〉dM.

3. The variation problem

Let X be a variation of x : M → Sn+1
1 , which is a differentiable map

X : (−ε, ε) × M → Sn+1
1 , ε > 0, such that X0 = x and for each t ∈ (−ε, ε),

Xt(·) = X(t, ·) is an immersion from M to Sn+1
1 , and Xt|∂M = x|∂M .

Next, we let dMt denote the volume element of the metric induced on M by
Xt and Nt the unit normal vector field along Xt.

The variational field associated with the variation X is the vector field
∂X
∂t |t=0. Let f = −〈∂X∂t , Nt〉, we get

∂X

∂t
= fNt + (

∂X

∂t
)⊤,

where ⊤ stands for tangential components.
The balance of volume of the variation X is the function V : (−ε, ε) → R

given by

V (t) =

∫

[0,t]×M

X∗(dSn+1
1 ).

and we say X is volume-preserving if V (t) = V (0) for all t ∈ (−ε, ε). The
following lemma is classical (cf. [11]).

Lemma 3.1. Let M
n+1

be a time-oriented Lorentz manifold and x : M →

M
n+1

a closed spacelike hypersurface. If X : M × (−ε, ε) → M
n+1

is a varia-

tion of x, then

dV

dt

∣

∣

∣

∣

t=0

=

∫

M

fdM.

In particular, X is volume-preserving if and only if
∫

M fdMt = 0 for all t.

In order to extend [4] to the Lorentz setting, we define the r-area functional
Ar(t) : (−ε, ε) → R associated with the variation X by

Ar(t) =

∫

M

Fr(S1, S2, . . . , Sr)dMt,
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where Sr = Sr(t) and Fr is recursively defined by setting F0 = 1, F1 = −S1

and, for 2 ≤ r ≤ n− 1,

Fr = (−1)rSr −
c(n− r + 1)

r − 1
Fr−2.

The next step is the Lorentz analogue of Proposition 4.1 of [3]. Since it
seems to us that their proof only works on a neighborhood free of umbilics,
and in order to keep this work self-contained, an alternative one is presented
here.

Lemma 3.2. Let x : M → Sn+1
1 be a closed spacelike hypersurface of the de

Sitter space Sn+1
1 , and let X : M × (−ε, ε) → Sn+1

1 be a variation of x. Then,

∂Sr+1

∂t
= (−1)r+1[Lrf + tr(Pr)f − tr(A2Pr)f ] + 〈(

∂X

∂t
)⊤,∇Sr+1〉.

For the constant a, the Jacobi functional associated to the variation X is
given by J : (−ε, ε) → R

J(t) = Ar(t)− a.

The following proposition is reached,

Proposition 3.1 (First Variation Formula). Let M be an n-dimensional closed

spacelike hypersurface in the de Sitter space Sn+1
1 . For any variation of x :

M → Sn+1
1 , we have

dJ(t)

dt
=

∫

M

[brHr+1 + cr − anH ],

where cr = 0 if r is even and cr = −n(n−2)···(n−r+1)
(r−1)(r−3)···2 (−1)(r+1)/2 if r is odd.

Proof. From Lemma 3.2, we have

dJ(t)

dt

=

∫

M

F ′
rdMt +

∫

M

(Fr − a)
∂

∂t
dMt

=

∫

M

[(−1)rS′
r −

n− r + 1

r − 1
F ′
r−2]dMt

+

∫

M

[(−1)rSr −
n− r + 1

r − 1
Fr−2 − a]

∂

∂t
dMt

=

∫

M

(−1)r[S′
r − S1Srf + Srdiv(∂X/∂t)⊤] + a[S1f − div(∂X/∂t)⊤]dMt

−
n− r + 1

r − 1
A′

r−2

=

∫

M

[tr(Pr−1)f + Lr−1f − tr(A2Pr−1f) + (−1)r〈∇Sr, (∂X/∂t)⊤〉]dMt

+ (−1)r
∫

M

(−S1Srf + Srdiv(∂X/∂t)⊤)dMt −
n− r + 1

r − 1
A′

r−2
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+ a

∫

M

[S1f − div(∂X/∂t)⊤]dMt

=

∫

M

[(−1)r−1(n− r + 1)Sr−1f − (−1)r−1(S1Sr − (r + 1)Sr+1)f + aS1f ]dMt

+ (−1)r
∫

M

〈∇Sr, (∂X/∂t)⊤〉]dMt

+

∫

M

[(−1)r+1S1Srf + (−1)rSrdiv(∂X/∂t)⊤]dMt

−
n− r + 1

r − 1

∫

M

[(−1)r−1(r − 1)Sr−1 + cr−2]fdMt − a

∫

M

div(∂X/∂t)⊤dMt.

It now suffices to apply the divergence theorem. Note that cr = −n−r+1
r−1 cr−2,

then

dJ(t)

dt
=

∫

M

[(−1)r+1(r + 1)Sr+1 + cr + aS1]fdMt

=

∫

M

[brHr+1 + cr − anH ].
�

By a direct application of Lemma 3.2 and Proposition 3.1, after a long but
direct computation, we obtain

Proposition 3.2 (Second Variation Formula). Let x : M → Sn+1
1 be a closed

spacelike hypersurface satisfying brHr+1 − anH = b, where 2 ≤ r ≤ n − 1, a
and b are constants. X is a variation of x, then the second derivative of J at

t = 0 is given by

J ′′(0)(f) =

∫

M

{

(r + 1)Lr − a∆)f + (r + 1)[(−1)r(n− r)Sr

+ (−1)r+1(S1Sr+1 − (r + 2)Sr+2)]f + a(n− S2
1 + 2S2)f

}

fdM.(3.1)

Definition 3.1. Let x : M → Sn+1
1 be a closed spacelike hypersurface satis-

fying brHr+1 − anH = b, where 2 ≤ r ≤ n − 1, a and b are constants. The
immersion x is said to be stable if J ′′(0)(f) ≤ 0 for all volume-preserving
variations of x.

Then from the above definition, a closed spacelike hypersurface satisfying
brHr+1 − anH = b is stable if and only if J ′′(0)(f) ≤ 0 for all differentiable
function f which satisfies

∫

M fdM = 0. This can be proved following a similar
argument as in [3, 11], the details are omitted here.

4. Proof of theorem

In this section, we will prove our main theorem.



1546 SHICHENG ZHANG

Proof of Theorem 1.1. Firstly, suppose that M is totally umbilical hypersur-
face in Sn+1

1 . Then the principal curvatures and H are constants, we may
assume H > 0. Thus we have

Sr = (−1)r
(

n

r

)

Hr,

and

Lrf =

(

n− 1

r

)

Hr∆f.

Choose f : M → R such that
∫

M
fdM = 0. From the second variation formula

(3.1) of J , we have

J ′′(0)(f) =

∫

M

{

(r + 1)Lr − a∆)f + (r + 1)[(−1)r(n− r)Sr

+ (−1)r+1(S1Sr+1 − (r + 2)Sr+2)]f + a(n− S2
1 + 2S2)f

}

fdM.

=

(

(r + 1)

(

n− 1

r

)

Hr − a

)
∫

M

(n(H2 + 1)f2 + f∆f)dM

≤

(

(r + 1)

(

n− 1

r

)

Hr − a

)
∫

M

(n(H2 + 1)− λ(M))f2dM,

where λ(M) is the first eigenvalue of the Laplacian ∆ in M . Since M is totally
umbilical, M is sphere. Then we have λ(M) = n(H2 + 1). By the assumption
that H > 0 and a ≤ 0, we obtain J ′′(0)(f) ≤ 0 for all f with

∫

M fdM = 0.
Therefore it is concluded that M is stable.

Now consider the reversed part. Let M ⊂ Sn+1
1 be a stable spacelike hyper-

surface satisfying brHr+1 − anH = b for some constants a ≤ 0 and b. We will
show that M is totally umbilical.

Let x : M → Sn+1
1 ⊂ R

n+2
1 . Fix a unit vector ν ∈ R

n+2
1 and define functions

f and g on M by

f = 〈N, ν〉, g = 〈x, ν〉.

These are called height functions in the direction ν associated to the hyper-
surface. We need the following result.

Lemma 4.1. If f and g are the height functions of a hypersurface x : M →
Sn+1
1 defined as above, then

Lr(g) = (−1)r(r + 1)Sr+1f − (−1)r(n− r)Srg,

Lr(f) = (−1)r+1(S1Sr+1 − (r + 2)Sr+2)f + (−1)r(r + 1)Sr+1g

+ (−1)r+1〈ν,∇Sr+1〉.

Proof. For a fixed arbitrary vector ν ∈ R
n+2
1 , let us consider the functions

f = 〈N, ν〉 and g = 〈x, ν〉 on M , we have

X(〈x, ν〉) = 〈X, ν〉 = 〈X, ν⊤〉,
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X(〈N, ν〉) = −〈AX, ν〉 = −〈X,A(ν⊤)〉

for every vector field X ∈ X (M), where ν⊤ ∈ X (M) denotes the tangential
component of ν,

ν = ν⊤ + 〈N, ν〉N + 〈x, ν〉x.(4.1)

Then the gradients of 〈x, ν〉 and 〈N, ν〉 on M are given by ∇〈x, ν〉 = ν⊤ and
∇〈N, ν〉 = −A(ν⊤), respectively. By taking covariant derivative in (4.1) and
using the Gauss and Weingarten formulae, we get

∇X∇〈x, ν〉 = ∇Xν⊤ = 〈N, ν〉AX − 〈x, ν〉X(4.2)

for every tangent vector field X ∈ X (M). Therefore, by Lemma 2.1, we obtain

Lrg = tr(APr)f − tr(Pr)g

= (−1)r(r + 1)Sr+1f − (−1)r(n− r)Srg

= −brHr+1f − brHrg.

On the other hand, from (4.2), we get

∇X∇〈N, ν〉 = −∇X(Aν⊤)

= −∇X(A)ν⊤ − 〈N, ν〉A2X + 〈x, ν〉AX.(4.3)

By Codazzi equation, we know that ∇A is symmetric and then

∇A(ν⊤, X) = ∇A(X, ν⊤) = (∇ν⊤A)X.

By (4.3) and Lemma 2.1, we obtain

Lrf = − tr(Pr∇ν⊤A)− ftr(A2Pr) + gtr(APr)

= (−1)r+1〈ν,∇Sr+1〉+ (−1)r+1(S1Sr+1 − (r + 2)Sr+2)f

+ (−1)r(r + 1)Sr+1g. �

As follows, we recall that the (n+ 2)-dimensional Lorentz-Minkowski space
R

n+2
1 is the real vector space R

n+2 endowed with the Lorentz metric

〈ν, ω〉 = −ν0ω0 +
n+1
∑

i=1

νiωi

for all ν, ω ∈ R
n+2. The (n+ 1)-dimensional de Sitter space Sn+1

1 is given by

Sn+1
1 = {p ∈ R

n+2
1 : 〈p, p〉 = 1}.

Then it is easy to show that the metric induced from 〈, 〉 turns Sn+1
1 into a

Lorentz manifold with constant sectional curvature one. We choose ν as an
element of a canonical basis a0, . . . , an+1 of Rn+2

1 and let fA and gA be the
above functions for ν = aA, A = 0, 1, . . . , n+ 1. Set

fA = 〈N, aA〉, gA = 〈x, aA〉.
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Now observe that,

n+1
∑

A=1

f2
A = 1+ f2

0 ,

n+1
∑

A=1

g2A = 1 + g20 ,

n+1
∑

A=1

fAgA = f0g0.

We define x =
∫

M
xdM . Since 〈x, x〉 = 1, then it is elementary to conclude

that 〈x, x〉 > 0. We choose a0 = x
|x| , then

1 = 〈a0, a0〉 = −〈a0, x〉
2 +

n
∑

A=1

〈a0, ei〉
2 − 〈a0, N〉2 ≥ −g20 − f2

0 .

Since x is stable. Then, for each A, J ′′(0)(gA) ≤ 0. On the other hand,

J ′′(0)(gA)

=

n+1
∑

A=0

∫

M

{

(r + 1)Lr − a∆)gA + (r + 1)[(−1)r(n− r)Sr

+ (−1)r+1(S1Sr+1 − (r + 2)Sr+2)]gA + a(n− S2
1 + 2S2)gA

}

gAdM

=

∫

M

{[

(−1)r(r + 1)Sr+1f0g0 − (−1)r(n− r)Srg
2
0

]

− aS1f0g0 + ang20

+ (r + 1)[(−1)r(n− r)Sr + (−1)r+1(S1Sr+1 − (r + 2)Sr+2)]g
2
0

+ a(n− S2
1 + 2S2)g

2
0 − (−1)r(n− r)Sr + an+ (r + 1)[(−1)r(n− r)Sr

+ (−1)r+1(S1Sr+1 − (r + 2)Sr+2)] + a(n− S2
1 + 2S2)

}

dM

≥

∫

M

{[

(−1)r(r + 1)Sr+1f0g0 − aS1f0g0

]

− [(−1)r(n− r)Sr − an](−1− f2
0 )

+ (r + 1)[(−1)r(n− r)Sr + (−1)r+1(S1Sr+1 − (r + 2)Sr+2)](−1− f2
0 )

+ a(n− S2
1 + 2S2)(−1− f2

0 )

− (−1)r(n− r)Sr + an+ (r + 1)[(−1)r(n− r)Sr

+ (−1)r+1(S1Sr+1 − (r + 2)Sr+2)] + a(n− S2
1 + 2S2)

}

dM

=

∫

M

{[

(−1)r(r + 1)Sr+1f0g0 − aS1f0g0

]

− [(−1)r(n− r)Sr − an](−f2
0 )

+ (r + 1)[(−1)r(n− r)Sr + (−1)r+1(S1Sr+1 − (r + 2)Sr+2)](−f2
0 )

+ a(n− S2
1 + 2S2)(−f2

0 )

}

dM

= −

∫

M

f0((r + 1)Lr − a∆)f0dM
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=

∫

M

(〈Pr∇f0,∇f0〉 − a〈∇f0,∇f0〉)dM ≥ 0,

where we use Proposition 2.1, Lemma 4.1 and a ≤ 0.
Therefore J ′′(0)(gA) must be zero. Then ∇f0 = 0 and 1 + g20 = −f2

0 . This
implies that g0 is constant and then M is totally umbilical. �
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