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SOME PROBLEMS ON 3-DIMENSIONAL REAL
HYPERSURFACES IN COMPLEX SPACE FORMS

Un Kyu Kim

Abstract. Niebergall and Ryan posed some open questions on
3-dimensional real hypersurfaces in complex space forms. In this
paper we give affirmative answers to such kind of questions.

1. Introduction

Recently, R. Niebergall and P. J. Ryan([5]) gave the necessary back-
ground material to access the study of real hypersurfaces in complex
space forms and gave a survey of this field of the study. Also they posed
some questions and problems which were not solved until now. Now let
us introduce one of them:

“Question 9.10. Many results have been proved for n ≥ 3 but ques-
tions remain concerning the case n = 2. For example, Theorems 5.5,
6.18, 6.19, 6.20, 6.21, 6.23, and 6.30 can be considered from this point
of view.”

The first and fourth theorems of the above question are as follows:

Theorem A [5, Theorem 5.5]. Let M2n−1, where n ≥ 3, be a real
hypersurface in a complex space form of constant holomorphic sectional
curvature 4c ̸= 0. Assume that

(∇X′A)Y ′ = −c⟨ϕX ′, Y ′⟩W
and

⟨(Aϕ − ϕA)X ′, Y ′⟩ = 0
for all X ′ and Y ′ in W⊥. Then M is an open subset of a Type A
hypersurface from Takagi’s list or Montiel’s list.
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Theorem B [5, Theorem 6.20]. Let M2n−1, where n ≥ 3, be a Hopf
hypersurface in a complex space form of constant holomorphic sectional
curvature 4c ̸= 0. Then M cannot have harmonic curvature, that is,
(∇Y S)Z − (∇ZS)Y cannot vanish identically.

Theorem A was proved by Ki and Suh ([2]). Relevant references to
Theorem B are [Ki [1]; Kwon and Nakagawa [4]; Kim [3]].

The purpose of the present paper is to prove the above two theorems
in the case of n = 2. In this paper we use the same terminologies and
notations as in [5].

2. Preliminaries

Let M̃(c) be a space of constant holomorphic sectional curvature 4c
with real dimension 2n and Levi-Civita connection ∇̃. For an immersed
manifold i : M2n−1 −→ M̃ , the Levi-Civita connection ∇ of the in-
duced metric and the shape operator A of the immersion are character-
ized respectively by

∇̃XY = ∇XY + ⟨AX, Y ⟩ξ
and

∇̃Xξ = −AX

where ξ is a local choice of unit normal. Let J : TM̃ −→ TM̃ be the
complex structure with properties J2 = −I, ∇̃J = 0, and ⟨JX, JY ⟩ =
⟨X,Y ⟩. Define the structure vector W = −Jξ. Then W ∈ TM and
|W | = 1.

Define a skew-symmetric (1,1)-tensor ϕ from the tangential projection
of J by

JX = ϕX + ⟨X,W ⟩ξ.
Then we have

(2.1) ϕ2X = −X + ⟨X,W ⟩W, ϕW = 0,

⟨ϕX, ϕY ⟩ = ⟨X, Y ⟩ − ⟨X, W ⟩⟨Y,W ⟩,
that is, (ϕ,W, ⟨, ⟩) determines an almost contact metric structure. We
denote W⊥ = {X ∈ TM |⟨X, W ⟩ = 0}. The Gauss and Codazzi equa-
tions are given by

(2.2) R(X,Y ) = AX ∧ AY + c(X ∧ Y + ϕX ∧ ϕY + 2⟨X, ϕY ⟩ϕ),

(2.3) (∇XA)Y − (∇Y A)X = c(⟨X,W ⟩ϕY − ⟨Y, W ⟩ϕX + 2⟨X, ϕY ⟩W ),
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where X ∧ Y denotes the linear transformation satisfying

(X ∧ Y )Z = ⟨Y, Z⟩X − ⟨X, Z⟩Y.

From equation (2.2) we get the Ricci tensor S of type (1,1) as

(2.4) SX = (2n + 1)cX − 3c⟨X, W ⟩W + mAX − A2X,

where m denotes the trace of A.
It is known ([5]) that

(2.5) ∇XW = ϕAX

and

(2.6) (∇Xϕ)Y = ⟨Y, W ⟩AX − ⟨AX, Y ⟩W.

If W is a principal vector, then M is called a Hopf hypersurface. A
fundamental fact about Hopf hypersurfaces is that the principal cur-
vature α corresponding to W is constant for complex space forms of
nonzero holomorphic sectional curvature.

Now we list standard examples of hypersurfaces in complex space
forms. These examples are so prevalent in the subject that they have
acquired a standard nomenclature. In complex projective space CPn,
the hypersurfaces divided into five types, A-E, while the complex hyper-
bolic space CHn has just two types. Types are further subdivided, e.g.,
A1, A2. The list is as follows([5]). In complex projective space, CPn:
(A1) Geodesic spheres.
(A2) Tubes over totally geodesic complex projective spaces CP k, where

1 ≤ k ≤ n − 2.
(B) Tubes over complex quadrics and RPn.
(C) Tubes over the Segre embedding of CP 1×CPm where 2m+1 = n

n ≥ 5.
(D) Tubes over the Plücker embedding of the complex Grassmann

manifold G2,5. Occur only for n = 9.
(E) Tubes over the cannonical embedding of the Hermitian symmetric

space SO(10)/U(5). Occur only for n = 15.
This list is often referred to as “Takagi’s list”.

In complex hyperbolic space CHn the list is as follows:
(A0) Horosphere.
(A1) Geodesic spheres and tubes over totally geodesic complex hyper-

bolic hyperplanes.
(A2) Tubes over totally geodesic CHk, where 1 ≤ k ≤ n − 2.
(B) Tubes over totally real hyperbolic space RHn.
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We refer to the list as “Montiel’s list”.

Here we refer the following theorem for later use.

Theorem 2.1 [5, Theorem 4.1]. Let M2n−1, where n ≥ 2, be a real
hypersurface in a complex space form of constant holomorphic sectional
curvature 4c ̸= 0. Then ϕA = Aϕ if and only if M is an open subset of
a Type A hypersurface.

3. Extension of Theorem A to n = 2

In this section we consider 3-dimensional real hypersurface in a com-
plex space form of constant holomorphic sectional curvature 4c ̸= 0. We
assume that

(3.1) (∇X′A)Y ′ = −c⟨ϕX ′, Y ′⟩W

and

(3.2) ⟨(Aϕ − ϕA)X ′, Y ′⟩ = 0

for all X ′ and Y ′ in W⊥. We choose a local frame field W, U, ϕU of M
and put

AW = αW + bU + eϕU,(3.3)
AU = bW + βU + δϕU,

AϕU = eW + δU + γϕU,

where we have used the property ⟨AY, Z⟩ = ⟨Y, AZ⟩. From the second
equation of (3.3) we get

ϕAU = βϕU − δU,

which and the third equation of (3.3), and (3.2) imply

⟨ϕAU − AϕU,U⟩ = −2δ = 0

and
⟨ϕAU − AϕU, ϕU⟩ = β − γ = 0.

Hence (3.3) is reduced to

AW = αW + bU + eϕU,(3.4)
AU = bW + βU,

AϕU = eW + βϕU.
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From the second equation of (3.4) we obtain, by the help of (2.5) and
(3.1),

(3.5) A∇UU = (Ub)W + bβϕU + (Uβ)U + β∇UU.

By the orthonormal expansion of ∇UU, we have

(3.6) ∇UU = −⟨ϕ∇UU,U⟩ϕU,

which gives

(3.7) A∇UU = −⟨ϕ∇UU,U⟩(eW + βϕU).

Substituting (3.6) and (3.7) into (3.5), we find

(3.8) e⟨ϕ∇UU,U⟩ + Ub = 0, Uβ = 0, bβ = 0.

Diffferentiating the third equation of (3.4) by U, we obtain, by the
help of (2.5), (2.6), (3.1), (3.4), (3.6), and (3.8),

(3.9) −cW − β(αW + eϕU) + ⟨ϕ∇UU,U⟩bW

= (Ue)W + eβϕU − β2W.

Hence we obtain

(3.10) −c − βα + ⟨ϕ∇UU,U⟩b = Ue − β2, βe = 0.

Assume that e ̸= 0 at a point p of M . Then e ̸= 0 in an open
neighborhood O of p. In O, we have β = 0 by the help of (3.10). Hence
(3.4) is reduced to

(3.11) AW = αW + bU + eϕU, AU = bW, AϕU = eW

in O. From the first equation of (3.8), we obtain

(3.12) ⟨ϕ∇UU,U⟩ = −1
e
Ub,

which and (3.10) imply

(3.13) bUb + eUe = −ce.

Differentiating the first equation and the second equation of (3.11)
covariantly, we obtain

(3.14) (∇UA)W = (Uα)W + (Ub)U + b∇UU + (Ue)ϕU + eϕ∇UU

and

(3.15) (∇W A)U + A∇W U = (Wb)W + b2ϕU − beU,

where we have used (2.5), (2.6), and (3.11). From (2.3) we get

(∇W A)U − (∇UA)W = cϕU,
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which and (3.14), and (3.15) imply

cϕU + A∇W U = (Wb)W + b2ϕU − beU − (Uα)W − (Ub)U − b∇UU

(3.16)

− (Ue)ϕU − eϕ∇UU.

By taking the inner product (3.16) with ϕU , we have

(3.17) c + e2 = b2 + b⟨ϕ∇UU,U⟩ − Ue,

where we have used
⟨A∇W U, ϕU⟩ = e⟨∇W U,W ⟩ = −e⟨U,∇W W ⟩

= −e⟨U, ϕAW ⟩ = e2.

Substituting (3.12) into (3.17) and taking account of (3.13), we obtain

(3.18) b2 − e2 = 0.

By taking the inner product (3.16) with U and using

⟨A∇W U,U⟩ = ⟨∇W U, bW ⟩ = −b⟨U,∇W W ⟩ = −b⟨U, ϕAW ⟩ = be,

we obtain

(3.19) 2be + Ub + e⟨ϕ∇UU,U⟩ = 0.

Substituting (3.12) into (3.19), we have be = 0. Hence we get b = 0.
Since b2 − e2 = 0 from (3.18), we have e = 0 on O. This contradicts to
our assumption. Therefore, we have e = 0 on all of M.

Now suppose that b ̸= 0 at a point p′ of M. Then there exists an open
neighborhood O′ of p′ in M such that b ̸= 0 in O′. Therefore we have
β = 0 in O′ by the help of (3.8). Hence (3.4) is reduced to

(3.20) AW = αW + bU, AU = bW, AϕU = 0.

From the first equation of (3.8) and (3.10) we have respectively

(3.21) Ub = 0, ⟨ϕ∇UU,U⟩ =
c

b
.

Differentiating the first equation and the second equation of (3.20)
respectively, we obtain

(∇UA)W = (Uα)W + b∇UU, (∇W A)U + A∇W U = (Wb)W + b2ϕU,

where we have used (2.5), (3.20), and (3.21).
Since (∇W A)U − (∇UA)W = cϕU by (2.3), we have

(3.22) cϕU + A∇W U = (Wb)W − (Uα)W + b2ϕU − b∇UU.
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By taking the inner product (3.22) with ϕU and using AϕU = 0, we
have

c = b2 + b⟨ϕ∇UU,U⟩ = b2 + c

because of (3.21). This contradicts to the assumption b ̸= 0. So we have
b = 0 on all of M.

Hence M is a Hopf hypersurface and we obtain from (3.4)

AW = αW, AU = βU, AϕU = βϕU,

which implies

AZ = βZ + (α − β)⟨Z, W ⟩W

for every vector field Z on M. Hence we have ϕA = Aϕ. By the Theorem
2.1 we have the following.

Theorem 3.1. Let M be a 3-dimensional real hypersurface in a
complex space form of constant holomorphic sectional curvature 4c ̸= 0.
Assume that

(∇X′A)Y ′ = −c⟨ϕX ′, Y ′⟩W

and

⟨(Aϕ − ϕA)X ′, Y ′⟩ = 0

for all X ′ and Y ′ in W⊥. Then M is an open subset of a Type A
hypersurface from Takagi’s list or Montiel’s list.

4. Extension of Theorem B to n = 2

Let M be a 3-dimensional Hopf hypersurface in a complex space form
of constant holomorphic sectional curvature 4c ̸= 0 and let (∇Y S)Z −
(∇ZS)Y vanishes identically.

We choose a local frame field W, X ′, ϕX ′ of M and put

AW = αW,(4.1)

AX ′ = α1W + β1X
′ + γ1ϕX ′,

AϕX ′ = α′
1W + β′

1X
′ + γ′

1ϕX ′.

Then we have α1 = 0 because of

α1 = ⟨AX ′,W ⟩ = ⟨X ′, AW ⟩ = ⟨X ′, αW ⟩ = α⟨X ′, W ⟩ = 0.
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Similarly, we have α′
1 = 0 and β′

1 = γ1. So (4.1) is rewritten as

AW = αW,(4.2)

AX ′ = β1X
′ + γ1ϕX ′,

AϕX ′ = γ1X
′ + γ′

1ϕX ′.

Therefore A : W⊥ −→ W⊥ is also a linear transformation and A satisfies
⟨AZ, Y ⟩ = ⟨Z, AY ⟩ for every Y and Z in W⊥. Hence A is diagonalizable.
So we can take a principal vector U ∈ W⊥ of A with corresponding
principal curvature β. Since W⊥ is a two dimensional space, another
principal vector must be of the form ±ϕU. Hence we have another local
frame field W, U, ϕU of M . So we can put

(4.3) AW = αW, AU = βU, AϕU = γϕU.

These equations show that the trace of A is given by m = α + β + γ.

It is known ([5, Lemma 2.2]) that if M2n−1, where n ≥ 2, is a Hopf
hypersurface in a complex space form of constant holomorphic sectional
curvature 4c, then we have

(4.4) AϕA − α

2
(Aϕ + ϕA) − cϕ = 0.

Using (4.3) and (4.4), we obtain

(4.5) α(β + γ) = 2βγ − 2c.

Using (2.4) and taking account of (4.3), we obtain

(4.6) SW = fW, SU = hU, SϕU = dϕU, ϕSU = hϕU,

where f, h, and d are given by

f = 2c + mα − α2, h = 5c + mβ − β2, d = 5c + mγ − γ2.

For later use we prepare the following equations.

∇W W = 0, ∇W U = −νϕU, ∇W (ϕU) = νU, ∇UW = βϕU,(4.7)

∇UU = −σϕU, ∇U (ϕU) = −βW + σU, ∇ϕUW = −γU,

∇ϕUU = γW − µϕU, ∇ϕUϕU = µU,

where we have put

σ = ⟨ϕ∇UU,U⟩, µ = ⟨ϕ∇ϕUU,U⟩, and ν = ⟨ϕ∇W U,U⟩.
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To obtain (4.7) we have used (2.5), (2.6), and (4.3). For example,

∇W (ϕU)

=⟨∇W (ϕU),W ⟩W + ⟨∇W (ϕU), U⟩U + ⟨∇W (ϕU), ϕU⟩ϕU

= − ⟨ϕU,∇W W ⟩W − ⟨ϕU,∇W U⟩U
= − ⟨ϕU, ϕAW ⟩W + ⟨ϕ∇W U,U⟩U = νU.

Since

(∇W S)U − (∇US)W = ∇W (SU) − S∇W U − [∇U (SW ) − S∇UW ] = 0,

we have, by the help of (4.6) and (4.7),

−(Uf)W + (Wh)U + (−hν − fβ + dν + dβ)ϕU = 0,

which gives

(4.8) Uf = 0, Wh = 0, −hν − fβ + dν + dβ = 0.

Similarly, from (∇W S)ϕU−(∇ϕUS)W = 0 and (∇US)ϕU−(∇ϕUS)U =
0, we have

(4.9) (d − h)ν + (f − h)γ = 0, Wd = 0, (ϕU)f = 0,

−dβ + βf − hγ + fγ = 0,−σh + σd − (ϕU)h = 0,(4.10)
Ud − µd + hµ = 0.

From the first equation of (4.10), m = α + β + γ, and (4.6) we obtain

(4.11) 3c(β + γ) + βγ(β + γ) − α(β2 + γ2) = 0.

Since

∇U∇ϕUϕU −∇ϕU∇UϕU −∇[U,ϕU ]ϕU = R(U, ϕU)ϕU,

we have, by the help of (2.2) and (4.7),

(4.12) Uµ + βν − σ2 + γν − µ2 − 2βγ − (ϕU)σ − 4c = 0.

Similarly, for the triples (ϕU,U,U), (U, ϕU,W ), (ϕU,W, ϕU), and (U,W,U)
we obtain

(4.13) −Uγ − µβ + µγ = 0,

(4.14) −(ϕU)β + γσ − βσ = 0,

(4.15) νγ − βγ − βν + αγ + c = 0,

(4.16) νβ − νγ − βγ + βα + c = 0.
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It is known([5, Lemma 2.13]) that Wm = 0 in a Hopf hypersurface
in a complex space form of constant holomorphic sectional curvature
4c ̸= 0. Since m = α + β + γ, we have W (β + γ) = 0. Hence we get

Wf = W (2c + α(β + γ)) = 0.

From (4.8) and (4.9), we have Uf = 0 and (ϕU)f = 0. So, f is constant.
From f = 2c+α(β + γ) and (4.5), we have f = 2βγ and βγ is constant.

Case 1. α = 0.

In this case we have c = βγ from (4.5). Hence we get 4c(β + γ) = 0
from (4.11) and we find β = −γ. Since m = α + β + γ, we obtain h = d
from (4.6). Therefore we have h = f from the first equation of (4.9) and
hence we get 3c = β2 from (4.6). Since c = βγ = −β2, we find c = 0.
This contradicts to our hypothesis c ̸= 0.

Case 2. α ̸= 0.

Since f = 2c+α(β+γ) = 2βγ from (4.5) and (4.6) and f is constant,
β and γ are constants.

(i) If β = γ, then we obtain β = γ = 0 from (4.5) and (4.11).
Substituting β = γ = 0 into (4.5), we find c = 0. This contradicts to our
hypothesis c ̸= 0.

(ii) If β ̸= γ, then we obtain µ = σ = 0 from (4.13) and (4.14).
Substituting µ = σ = 0 into (4.12), we get

(4.17) (β + γ)ν = 2βγ + 4c.

From (4.12) and (4.15) we obtain

(4.18) 2βν − γ(α + β) − 5c = 0,

where we have used µ = σ = 0.
Similarly, from (4.12) and (4.16) we have

(4.19) 2γν − β(α + γ) − 5c = 0.

From (4.18) and (4.19) we find ν = −α

2
.

Substituting ν = −α

2
into (4.17) and taking account of (4.5), we find

βγ = −c.

Substituting ν = −α

2
and βγ = −c into (4.15), we get β + γ = −4c

α
.

Thus β and γ are roots of the quadratic equation

x2 +
4c

α
x − c = 0.
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Hence we have

(4.20) 4c2 + cα2 ≥ 0.

On the other hand, if we substitute βγ = −c and β + γ = −4c

α
into

(4.11), then we have

(4.21) 12c2 + cα2 = 0.

From (4.20) and (4.21) we find c = 0, which contradicts to our hypoth-
esis.

Therefore we have the following.

Theorem 4.1. Let M be a 3-dimensional Hopf hypersurface in a
complex space form of constant holomorphic sectional curvature 4c ̸= 0.
Then M cannot have harmonic curvature, that is, (∇Y S)Z − (∇ZS)Y
cannot vanish identically.
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