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MORPHISMS BETWEEN FANO MANIFOLDS
GIVEN BY COMPLETE INTERSECTIONS

Insong Choe*

Abstract. We study the existence of surjective morphisms be-
tween Fano manifolds of Picard number 1, when the source is given
by the intersection of a cubic hypersurface and either a quadric or
another cubic hypersurface in a projective space.

1. Introduction

For two Fano manifolds X and Y of Picard number 1, one may ask
if there is a surjective morphism

f : X → Y.

In particular, one may ask if a Fano manifold X of Picard number 1
admits a surjective endomorphism of degree bigger than 1. On these
questions, there have been several attempts to confirm the following
conjectures. Recall that the index i(X) of X is defined by the number
i such that

−KX
∼= OX(i),

where OX(1) is the ample generator of Pic(X).

Conjecture 1.1. (Peternell, [6]) If there is a surjective morphism

f : X → Y

between Fano manifolds X and Y of Picard number 1, then

i(X) ≤ i(Y ).
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Conjecture 1.2. (See [1], Conjecture 1.1) If a Fano manifold X of
Picard number 1 admits a surjective endomorphism of degree > 1, then
X ∼= Pn.

Beauville observed that the Chern number inequality devised by
Amerik, Rovinsky, and Van de Ven [2] can be used to prove the fol-
lowing.

Proposition 1.3. ([3]) A smooth hypersurface in Pn+1 of degree d
admits no endomorphisms of degree bigger than 1 if n ≥ 2 and d ≥ 3.

It has been observed that the same Chern number inequality can
actually be applied to more general situations.

Proposition 1.4. ([4]) Let X and Y be smooth Fano hypersurfaces
in Pn+1, n ≥ 3, of degree dX and dY respectively, dX , dY ≥ 3. If there
is a surjective morphism

f : X → Y,

then either iX < iY or f is an isomorphism.

Proposition 1.5. ([5], Theorem 1.5) Let V be a Fano manifold
of Picard number 1. Assume that dim V ≥ 4 and the ample generator
OV (1) of Pic(V ) is very ample. If X is a smooth hypersurface of V cut
out by a member of |OV (d)|, d ≥ 4, then X admits no endomorphism
of degree bigger than 1.

But note here that we need the conditions “d ≥ 3” in Theorem 1.3,
“dX , dY ≥ 3” in Theorem 1.4, and “d ≥ 4” in Theorem 1.5. This
kind of degree condition is required simply because the Chern number
inequality, which is the main tool of proof, does not work effectively
when d ≤ 2.

A natural question in this direction are the following:
• Can Propositions 1.4 and 1.5 be generalized to the case of complete
intersections?
• Is the statement of Proposition 1.5 still true for the case when d = 3?

The first question for Proposition 1.5 can be answered affirmatively
if it is a complete intersection of k hypersurfaces of degree d1, d2, · · · , dk

where max{d1, · · · , dk} ≥ 4: see Theorem 3.1 of [5].
In this paper, we consider the cases of (1) the intersection of a quadric

and a cubic hypersurface and (2) the intersection of two cubic hyper-
surfaces in a projective space. For n ≥ 3 (resp. n ≥ 4), projective
manifolds given by the intersection of a smooth quadric and a smooth
cubic hypersurface (resp. of two smooth cubic hypersurfaces) in Pn+2

are Fano manifolds of Picard number 1. We prove the following.
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Theorem 1.6. Let X̃ be either a smooth quadric or a smooth cubic
hypersurface in Pn+2, n ≥ 3. Let X be a submanifold of dimension n
given by the intersection of X̃ and a cubic hypersurface in Pn+2. Let Y
be a smooth subvariety of Pn+2 cut out by two smooth hypersurfaces of
degree d1 and d2 respectively. If there is a surjective morphism

f : X → Y

of degree bigger than 1, then either d1 = d2 = 2 or d1d2 ≤ 3.

Note that i(Y ) = n + 3− (d1 + d2). Hence the above result implies:
(i) X admits no endomorphisms of degree bigger than 1, and
(ii) if there is a surjective morphism f : X → Y where Y is a smooth
subvariety of Pn+2 cut out by two smooth hypersurfaces, then either
i(X) < i(Y ) or f is an isomorphism.

In particular, we get the following.

Corollary 1.7. Let X be a smooth subvariety of Pn+2 cut out
by two smooth hypersurfaces of degree d1 and d2 respectively, where
d1 ≥ d2. If n ≥ 3 and d1 ≥ 3, then X does not admit an endomorphism
of degree bigger than 1.

Proof. When d1 ≥ 4, this is a special case of Theorem 3.1 of [5].
When d2 = 1, X is a hypersurface of Pn+1 of degree d1 ≥ 3 and the
wanted result was shown in [3]. For the remaining cases where d1 = 3
and d2 ≥ 2, the wanted result follows from Theorem 1.6.

2. Chern number inequalities

First let us recall the inequality proven by Amerik, Rovinsky and Van
de Ven.

Lemma 2.1. ([2], Corollary 1.2) Let f : X → Y be a finite morphism
between smooth projective varieties of dimension n. Let L be a line
bundle on Y such that ΩY (L) is globally generated. Then

deg(f) · cn(ΩY (L)) ≤ cn(ΩX(f∗L)).

Corollary 2.2. Let X and Y be smooth subvarieties of Pn+2 of
dimension n ≥ 3 cut out by two smooth hypersurfaces of degree x1, x2

and y1, y2 respectively. If there is a surjective morphism f : X → Y ,
then

(2.1)
1

y1y2
cn(ΩY (2)) ≤ 1

mn · x1x2
cn(ΩX(2m)),
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where m is the number given by f∗OY (1) ∼= OX(m) for the ample
generators OX(1) and OY (1) of X and Y respectively.

Proof. Since Ω(2) is globally generated on Pn+2, so is its quotient
ΩY (2). By Lemma 2.1,

deg(f) · cn(ΩY (2)) ≤ cn(ΩX(2m)).

The inequality (2.1) follows from deg(f) = mnOX(1)n

OY (1)n
= mn x1x2

y1y2
.

Now we compute the involved Chern numbers explicitly. Let Z be a
smooth subvariety of Pn+2 cut out by two smooth hypersurfaces H1 and
H2 of degree d1 and d2 respectively. Assume that n ≥ 3 so that we get
the isomorphism Pic(Z) ∼= Pic(Pn+2) ∼= Z given by the restriction of line
bundles.

We may use the (twisted) Euler sequence and the conormal sequences:

0 → ΩPn+2(2m)|Z → OZ(2m− 1)⊕(n+3) → OZ(2m) → 0,

0 → OH1(−d1) → ΩPn+2 |H1 → ΩH1 → 0,

0 → OZ(−d2) → ΩH1 |Z → ΩZ → 0.

From these we get

c(ΩZ(2m))

= (1 + (2m− 1)h)n+3(1 + 2mh)−1(1 + (2m− d1)h)−1(1 + (2m− d2)h)−1,

where h is the hyperplane section class of Z. Therefore the top Chern
class is computed by the residue at 0:

cn(ΩZ(2m)) = hn ·Res0 (ω),

where

ω =
(1 + (2m− 1)z)n+3

zn+1(1 + 2mz)(1 + (2m− d1)z)(1 + (2m− d2)z)
dz.

Now we can use the residue theorem to compute cn(ΩZ(2m)).
(Case 1) If d1, d2, 2m are different to each other, then

Res0 ω =− (Res−1/2m ω + Res−1/(2m−d1) ω

+ Res−1/(2m−d2) ω + Res∞ ω),



Morphisms between Fano manifolds 693

where

Res−1/2m ω =
(−1)n+1

2md1d2
,

Res−1/(2m−di) ω =
(di − 1)n+3

di(2m− di)(di − dj)
, 1 ≤ i 6= j ≤ 2,

Res∞ ω = − (2m− 1)n+3

2m(2m− d1)(2m− d2)
.

(Case 2) If d1 = d2 ≥ 3, then

Res0 ω = −(Res−1/2m ω + Res1/(d1−2m) ω + Res∞ ω),

where

Res−1/2mω =
(−1)n+1

2md2
1

,

Res−1/(2m−d1)ω =
(d1 − 1)n+2

d2
1(d1 − 2)2

[2m{(n + 2)d1 + 1}

−(n + 1)d2
1 − 2d1],

Res∞ω = − (2m− 1)n+3

2m(2m− d1)2
.

(Case 3) If d1 ≥ 3, d2 = 2, and m = 1, then

Res0 ω = −(Res−1/2 ω + Res1/(d1−2) ω + Res∞ ω),

where

Res−1/2 ω =
(−1)n+1

4d1
,

Res1/(di−2) ω = −(d1 − 1)n+3

d1(d1 − 2)2
,

Res∞ ω =
n + 3

2(d1 − 2)
− d1 − 4

4(d1 − 2)2
.

From these computations, we get the following formulae.

Lemma 2.3. (1) If d1 = 3, d2 = 2 and m ≥ 2, then

1
6
cn(ΩZ(2m)) =

(2m− 1)n+3

2m(2m− 2)(2m− 3)
− 2n+3

3(2m− 3)

+
1

2(2m− 2)
+

(−1)n

12m
.
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(2) If d1 = d2 = 3, then

1
9
cn(ΩZ(2m)) =

(2m− 1)n+3

2m(2m− 3)2

− 2n+2

9(2m− 3)2
(6mn + 14m− 9n− 15) +

(−1)n

18m
.

(3) If d1 > d2 ≥ 3, then

1
d1d2

cn(ΩZ(2)) =
1

d1 − d2

(
(d1 − 1)n+3

d1(d1 − 2)
− (d2 − 1)n+3

d2(d2 − 2)

)
+

1
2(d1 − 2)(d2 − 2)

+
(−1)n

2d1d2
.

(4) If d1 = d2 ≥ 3, then

1
d2

1

cn(ΩZ(2)) =
n(d1 − 1)n+2

d1(d1 − 2)
+

(d1 − 1)n+2(d2
1 − 2d1 − 2)

d2
1(d1 − 2)2

+
1

2(d1 − 2)2
+

(−1)n

2d2
1

.

(5) If d1 ≥ 3 and d2 = 2, then

1
2d1

cn(ΩZ(2)) =
(d1 − 1)n+3

d1(d1 − 2)2
+

d1 − 4
4(d1 − 2)2

− n + 3
2(d1 − 2)

+
(−1)n

4d1
.

Lemma 2.4. (1) If m ≥ 2, d1 = 3, and either d2 = 2 or d2 = 3, then

1
mn · d1d2

cn(ΩZ(2m)) < 2n+1.

(2) If either d1, d2 ≥ 3 or d1 > d2 = 2, then

1
d1d2

cn(ΩZ(2)) > (d1 − 1)n.

Proof. (1) If m ≥ 2, d1 = 3, and d2 = 2, by Lemma 2.3 (1),

1
6mn

cn(ΩZ(2m)) <
(2m− 1)n+3

mn · 2m(2m− 2)(2m− 3)
.

The righthand side is smaller than 2n+1 for m = 2. For m ≥ 3, still it is
bounded by 2n+1, since

(2m− 1)3

2m(2m− 2)(2m− 3)
< 2.
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If m ≥ 2, d1 = 3, and d2 = 3, by Lemma 2.3 (2),

1
9mn

cn(ΩZ(2m)) <
(2m− 1)n+3

mn · 2m(2m− 3)2
.

The righthand side is smaller than 2n+1 for m = 2, 3. If m ≥ 4, then
still it is bounded by 2n+1, since

(2m− 1)3

2m(2m− 3)2
< 2.

(2) We consider the three cases corresponding to (3), (4), and (5) of
Lemma 2.3 in turn. First if d1 > d2 ≥ 3, then the wanted inequality is
obtained from the following claim.
For integers a, b such that a > b ≥ 2 and for any positive integer n,

1
a− b

(
an+3

a2 − 1
− bn+3

b2 − 1

)
> an.

This can be easily shown by induction on n.
Secondly if d1 = d2 ≥ 3, then from (4) of Lemma 2.3, we easily get a

much stronger inequality than wanted.
Finally if d1 ≥ 3 and d2 = 2, then since

(d1 − 1)n+3 > d2
1(d1 − 2)2(d1 − 1)n−1,

we get

(d1 − 1)n+3

d1(d1 − 2)2
> d(d1 − 1)n−1 = (d1 − 1)n + (d1 − 1)n−1.

Since (d1− 1)n−1 >
n + 3

2(d1 − 2)
, the wanted inequality follows from (5) of

Lemma 2.3.

3. Proof of Theorem 1.6

Let X be the subvariety of Pn+2, dim X = n ≥ 3, as was described
in the statement of Theorem 1.6. Let Y be a smooth subvariety of Pn+2

cut out by two smooth hypersurfaces of degree d1 and d2, d1 ≥ d2.
Assuming that there is a surjective morphism

f : X → Y

of degree bigger than 1, we have to show that either d1 = d2 = 2 or
d1d2 ≤ 3.

Let m be the integer such that f∗OY (1) ∼= OX(m). First we assume
m ≥ 2 and prove that either d1 = d2 = 2 or d1d2 ≤ 3.
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By the inequality (2.1),

(3.1)
1
d
cn(ΩY (2)) ≤ 1

dmn
cn(ΩX(2m)),

where d = 6 (resp. d = 9) if X is an intersection of a quadric and a cubic
(resp. an intersection of two cubics). By Lemma 2.4 (1), the right-hand
side is bounded from above by 2n+1.

If either d1, d2 ≥ 3 or d1 > d2 ≥ 2, then by Lemma 2.4 (2), the
left-hand side is bounded from below by (d1 − 1)n. Hence we get

d1 − 1 < 21/n · 2,

which implies d1 ≤ 3. Now we need to exclude the cases d1 = d2 = 3
and d1 = 3, d2 = 2. If d1 = d2 = 3, then by Lemma 2.3 (4),

1
d1d2

cn(ΩY (2)) >
n · 2n+2

3
≥ 2n+2.

If d1 = 3 and d2 = 2, then by Lemma 2.3 (5),

1
d1d2

cn(ΩY (2)) >
2n+3

3
− n.

Both of these contradict to the inequality (3.1) together with the upper
bound 2n+1 on the righthand side.

Now we finish the proof by considering the case where m = 1. In
this case, deg f = 6/(d1d2) (resp. deg f = 9/(d1d2)). If d1d2 = 6 (resp.
d1d2 = 9), then deg f = 1 and f must be an isomorphism. Otherwise,
d1d2 ≤ 3. This finishes the proof of Theorem 1.6.

Remark 3.1. When d1 = 3 and d2 = 1, we can prove that m = 1 by
computing the Chern number cn(ΩY (2)) explicitly. On the other hand,
the Chern number inequality does not give any effective result for the
cases where d1, d2 ≤ 2.
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