MORPHISMS BETWEEN FANO MANIFOLDS GIVEN BY COMPLETE INTERSECTIONS

Insong Choe*

Abstract

We study the existence of surjective morphisms between Fano manifolds of Picard number 1, when the source is given by the intersection of a cubic hypersurface and either a quadric or another cubic hypersurface in a projective space.

1. Introduction

For two Fano manifolds X and Y of Picard number 1, one may ask if there is a surjective morphism

$$
f: X \rightarrow Y .
$$

In particular, one may ask if a Fano manifold X of Picard number 1 admits a surjective endomorphism of degree bigger than 1. On these questions, there have been several attempts to confirm the following conjectures. Recall that the index $i(X)$ of X is defined by the number i such that

$$
-K_{X} \cong \mathcal{O}_{X}(i)
$$

where $\mathcal{O}_{X}(1)$ is the ample generator of $\operatorname{Pic}(X)$.
Conjecture 1.1. (Peternell, [6]) If there is a surjective morphism

$$
f: X \rightarrow Y
$$

between Fano manifolds X and Y of Picard number 1, then

$$
i(X) \leq i(Y)
$$

[^0]Conjecture 1.2. (See [1], Conjecture 1.1) If a Fano manifold X of Picard number 1 admits a surjective endomorphism of degree >1, then $X \cong \mathbb{P}^{n}$.

Beauville observed that the Chern number inequality devised by Amerik, Rovinsky, and Van de Ven [2] can be used to prove the following.

Proposition 1.3. ([3]) A smooth hypersurface in \mathbb{P}^{n+1} of degree d admits no endomorphisms of degree bigger than 1 if $n \geq 2$ and $d \geq 3$.

It has been observed that the same Chern number inequality can actually be applied to more general situations.

Proposition 1.4. ([4]) Let X and Y be smooth Fano hypersurfaces in $\mathbb{P}^{n+1}, n \geq 3$, of degree d_{X} and d_{Y} respectively, $d_{X}, d_{Y} \geq 3$. If there is a surjective morphism

$$
f: X \rightarrow Y
$$

then either $i_{X}<i_{Y}$ or f is an isomorphism.
Proposition 1.5. ([5], Theorem 1.5) Let V be a Fano manifold of Picard number 1. Assume that $\operatorname{dim} V \geq 4$ and the ample generator $\mathcal{O}_{V}(1)$ of $\operatorname{Pic}(V)$ is very ample. If X is a smooth hypersurface of V cut out by a member of $\left|\mathcal{O}_{V}(d)\right|, d \geq 4$, then X admits no endomorphism of degree bigger than 1.

But note here that we need the conditions " $d \geq 3$ " in Theorem 1.3, " $d_{X}, d_{Y} \geq 3$ " in Theorem 1.4, and " $d \geq 4$ " in Theorem 1.5. This kind of degree condition is required simply because the Chern number inequality, which is the main tool of proof, does not work effectively when $d \leq 2$.

A natural question in this direction are the following:

- Can Propositions 1.4 and 1.5 be generalized to the case of complete intersections?
- Is the statement of Proposition 1.5 still true for the case when $d=3$?

The first question for Proposition 1.5 can be answered affirmatively if it is a complete intersection of k hypersurfaces of degree $d_{1}, d_{2}, \cdots, d_{k}$ where $\max \left\{d_{1}, \cdots, d_{k}\right\} \geq 4$: see Theorem 3.1 of [5].

In this paper, we consider the cases of (1) the intersection of a quadric and a cubic hypersurface and (2) the intersection of two cubic hypersurfaces in a projective space. For $n \geq 3$ (resp. $n \geq 4$), projective manifolds given by the intersection of a smooth quadric and a smooth cubic hypersurface (resp. of two smooth cubic hypersurfaces) in \mathbb{P}^{n+2} are Fano manifolds of Picard number 1. We prove the following.

Theorem 1.6. Let \tilde{X} be either a smooth quadric or a smooth cubic hypersurface in $\mathbb{P}^{n+2}, n \geq 3$. Let X be a submanifold of dimension n given by the intersection of \tilde{X} and a cubic hypersurface in \mathbb{P}^{n+2}. Let Y be a smooth subvariety of \mathbb{P}^{n+2} cut out by two smooth hypersurfaces of degree d_{1} and d_{2} respectively. If there is a surjective morphism

$$
f: X \rightarrow Y
$$

of degree bigger than 1 , then either $d_{1}=d_{2}=2$ or $d_{1} d_{2} \leq 3$.
Note that $i(Y)=n+3-\left(d_{1}+d_{2}\right)$. Hence the above result implies: (i) X admits no endomorphisms of degree bigger than 1 , and
(ii) if there is a surjective morphism $f: X \rightarrow Y$ where Y is a smooth subvariety of \mathbb{P}^{n+2} cut out by two smooth hypersurfaces, then either $i(X)<i(Y)$ or f is an isomorphism.

In particular, we get the following.
Corollary 1.7. Let X be a smooth subvariety of \mathbb{P}^{n+2} cut out by two smooth hypersurfaces of degree d_{1} and d_{2} respectively, where $d_{1} \geq d_{2}$. If $n \geq 3$ and $d_{1} \geq 3$, then X does not admit an endomorphism of degree bigger than 1 .

Proof. When $d_{1} \geq 4$, this is a special case of Theorem 3.1 of [5]. When $d_{2}=1, X$ is a hypersurface of \mathbb{P}^{n+1} of degree $d_{1} \geq 3$ and the wanted result was shown in [3]. For the remaining cases where $d_{1}=3$ and $d_{2} \geq 2$, the wanted result follows from Theorem 1.6.

2. Chern number inequalities

First let us recall the inequality proven by Amerik, Rovinsky and Van de Ven.

Lemma 2.1. ([2], Corollary 1.2) Let $f: X \rightarrow Y$ be a finite morphism between smooth projective varieties of dimension n. Let L be a line bundle on Y such that $\Omega_{Y}(L)$ is globally generated. Then

$$
\operatorname{deg}(f) \cdot c_{n}\left(\Omega_{Y}(L)\right) \leq c_{n}\left(\Omega_{X}\left(f^{*} L\right)\right)
$$

Corollary 2.2. Let X and Y be smooth subvarieties of \mathbb{P}^{n+2} of dimension $n \geq 3$ cut out by two smooth hypersurfaces of degree x_{1}, x_{2} and y_{1}, y_{2} respectively. If there is a surjective morphism $f: X \rightarrow Y$, then

$$
\begin{equation*}
\frac{1}{y_{1} y_{2}} c_{n}\left(\Omega_{Y}(2)\right) \leq \frac{1}{m^{n} \cdot x_{1} x_{2}} c_{n}\left(\Omega_{X}(2 m)\right), \tag{2.1}
\end{equation*}
$$

where m is the number given by $f^{*} \mathcal{O}_{Y}(1) \cong \mathcal{O}_{X}(m)$ for the ample generators $\mathcal{O}_{X}(1)$ and $\mathcal{O}_{Y}(1)$ of X and Y respectively.

Proof. Since $\Omega(2)$ is globally generated on \mathbb{P}^{n+2}, so is its quotient $\Omega_{Y}(2)$. By Lemma 2.1,

$$
\operatorname{deg}(f) \cdot c_{n}\left(\Omega_{Y}(2)\right) \leq c_{n}\left(\Omega_{X}(2 m)\right)
$$

The inequality (2.1) follows from $\operatorname{deg}(f)=m^{n} \frac{\mathcal{O}_{X}(1)^{n}}{\mathcal{O}_{Y}(1)^{n}}=m^{n} \frac{x_{1} x_{2}}{y_{1} y_{2}}$.
Now we compute the involved Chern numbers explicitly. Let Z be a smooth subvariety of \mathbb{P}^{n+2} cut out by two smooth hypersurfaces H_{1} and H_{2} of degree d_{1} and d_{2} respectively. Assume that $n \geq 3$ so that we get the isomorphism $\operatorname{Pic}(Z) \cong \operatorname{Pic}\left(\mathbb{P}^{n+2}\right) \cong \mathbb{Z}$ given by the restriction of line bundles.

We may use the (twisted) Euler sequence and the conormal sequences:

$$
\begin{aligned}
& \left.0 \rightarrow \Omega_{\mathbb{P}^{n+2}}(2 m)\right|_{Z} \rightarrow \mathcal{O}_{Z}(2 m-1)^{\oplus(n+3)} \rightarrow \mathcal{O}_{Z}(2 m) \rightarrow 0 \\
& \left.0 \rightarrow \mathcal{O}_{H_{1}}\left(-d_{1}\right) \rightarrow \Omega_{\mathbb{P}^{n+2}}\right|_{H_{1}} \rightarrow \Omega_{H_{1}} \rightarrow 0 \\
& \left.0 \rightarrow \mathcal{O}_{Z}\left(-d_{2}\right) \rightarrow \Omega_{H_{1}}\right|_{Z} \rightarrow \Omega_{Z} \rightarrow 0
\end{aligned}
$$

From these we get

$$
\begin{aligned}
& c\left(\Omega_{Z}(2 m)\right) \\
& =(1+(2 m-1) h)^{n+3}(1+2 m h)^{-1}\left(1+\left(2 m-d_{1}\right) h\right)^{-1}\left(1+\left(2 m-d_{2}\right) h\right)^{-1}
\end{aligned}
$$

where h is the hyperplane section class of Z. Therefore the top Chern class is computed by the residue at 0 :

$$
c_{n}\left(\Omega_{Z}(2 m)\right)=h^{n} \cdot \operatorname{Res}_{0}(\omega)
$$

where

$$
\omega=\frac{(1+(2 m-1) z)^{n+3}}{z^{n+1}(1+2 m z)\left(1+\left(2 m-d_{1}\right) z\right)\left(1+\left(2 m-d_{2}\right) z\right)} d z
$$

Now we can use the residue theorem to compute $c_{n}\left(\Omega_{Z}(2 m)\right)$.
(Case 1) If $d_{1}, d_{2}, 2 m$ are different to each other, then

$$
\begin{aligned}
\boldsymbol{\operatorname { R e s }}_{0} \omega= & -\left(\boldsymbol{\operatorname { R e s }}_{-1 / 2 m} \omega+\boldsymbol{\operatorname { R e s }}_{-1 /\left(2 m-d_{1}\right)} \omega\right. \\
& \left.+\boldsymbol{\operatorname { R e s }}_{-1 /\left(2 m-d_{2}\right)} \omega+\boldsymbol{\operatorname { R e s }}_{\infty} \omega\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\operatorname{Res}_{-1 / 2 m} \omega & =\frac{(-1)^{n+1}}{2 m d_{1} d_{2}} \\
\boldsymbol{\operatorname { R e s }}_{-1 /\left(2 m-d_{i}\right)} \omega & =\frac{\left(d_{i}-1\right)^{n+3}}{d_{i}\left(2 m-d_{i}\right)\left(d_{i}-d_{j}\right)}, \quad 1 \leq i \neq j \leq 2 \\
\boldsymbol{\operatorname { R e s }}_{\infty} \omega & =-\frac{(2 m-1)^{n+3}}{2 m\left(2 m-d_{1}\right)\left(2 m-d_{2}\right)}
\end{aligned}
$$

(Case 2) If $d_{1}=d_{2} \geq 3$, then

$$
\boldsymbol{\operatorname { R e s }}_{0} \omega=-\left(\boldsymbol{\operatorname { R e s }}_{-1 / 2 m} \omega+\boldsymbol{\operatorname { R e s }}_{1 /\left(d_{1}-2 m\right)} \omega+\boldsymbol{\operatorname { R e s }}_{\infty} \omega\right)
$$

where

$$
\begin{aligned}
\boldsymbol{\operatorname { R e s }}_{-1 / 2 m} \omega & = \\
\boldsymbol{\operatorname { R e s }}_{-1 /\left(2 m-d_{1}\right)} \omega= & \frac{(-1)^{n+1}}{2 m d_{1}^{2}} \\
& \frac{\left(d_{1}-1\right)^{n+2}}{d_{1}^{2}\left(d_{1}-2\right)^{2}}\left[2 m\left\{(n+2) d_{1}+1\right\}\right. \\
\boldsymbol{\operatorname { R e s }}_{\infty} \omega & \left.-(n+1) d_{1}^{2}-2 d_{1}\right] \\
& =-\frac{(2 m-1)^{n+3}}{2 m\left(2 m-d_{1}\right)^{2}}
\end{aligned}
$$

(Case 3) If $d_{1} \geq 3, d_{2}=2$, and $m=1$, then

$$
\boldsymbol{\operatorname { R e s }}_{0} \omega=-\left(\boldsymbol{\operatorname { R e s }}_{-1 / 2} \omega+\boldsymbol{\operatorname { R e s }}_{1 /\left(d_{1}-2\right)} \omega+\boldsymbol{\operatorname { R e s }}_{\infty} \omega\right)
$$

where

$$
\begin{aligned}
\boldsymbol{\operatorname { R e s }}_{-1 / 2} \omega & =\frac{(-1)^{n+1}}{4 d_{1}} \\
\boldsymbol{\operatorname { R e s }}_{1 /\left(d_{i}-2\right)} \omega & =-\frac{\left(d_{1}-1\right)^{n+3}}{d_{1}\left(d_{1}-2\right)^{2}} \\
\boldsymbol{\operatorname { R e s }}_{\infty} \omega & =\frac{n+3}{2\left(d_{1}-2\right)}-\frac{d_{1}-4}{4\left(d_{1}-2\right)^{2}}
\end{aligned}
$$

From these computations, we get the following formulae.
Lemma 2.3. (1) If $d_{1}=3, d_{2}=2$ and $m \geq 2$, then

$$
\begin{aligned}
\frac{1}{6} c_{n}\left(\Omega_{Z}(2 m)\right)= & \frac{(2 m-1)^{n+3}}{2 m(2 m-2)(2 m-3)}-\frac{2^{n+3}}{3(2 m-3)} \\
& +\frac{1}{2(2 m-2)}+\frac{(-1)^{n}}{12 m}
\end{aligned}
$$

(2) If $d_{1}=d_{2}=3$, then

$$
\begin{aligned}
\frac{1}{9} c_{n}\left(\Omega_{Z}(2 m)\right) & =\frac{(2 m-1)^{n+3}}{2 m(2 m-3)^{2}} \\
& -\frac{2^{n+2}}{9(2 m-3)^{2}}(6 m n+14 m-9 n-15)+\frac{(-1)^{n}}{18 m}
\end{aligned}
$$

(3) If $d_{1}>d_{2} \geq 3$, then

$$
\begin{aligned}
\frac{1}{d_{1} d_{2}} c_{n}\left(\Omega_{Z}(2)\right) & =\frac{1}{d_{1}-d_{2}}\left(\frac{\left(d_{1}-1\right)^{n+3}}{d_{1}\left(d_{1}-2\right)}-\frac{\left(d_{2}-1\right)^{n+3}}{d_{2}\left(d_{2}-2\right)}\right) \\
& +\frac{1}{2\left(d_{1}-2\right)\left(d_{2}-2\right)}+\frac{(-1)^{n}}{2 d_{1} d_{2}}
\end{aligned}
$$

(4) If $d_{1}=d_{2} \geq 3$, then

$$
\begin{aligned}
\frac{1}{d_{1}^{2}} c_{n}\left(\Omega_{Z}(2)\right) & =\frac{n\left(d_{1}-1\right)^{n+2}}{d_{1}\left(d_{1}-2\right)}+\frac{\left(d_{1}-1\right)^{n+2}\left(d_{1}^{2}-2 d_{1}-2\right)}{d_{1}^{2}\left(d_{1}-2\right)^{2}} \\
& +\frac{1}{2\left(d_{1}-2\right)^{2}}+\frac{(-1)^{n}}{2 d_{1}^{2}}
\end{aligned}
$$

(5) If $d_{1} \geq 3$ and $d_{2}=2$, then

$$
\frac{1}{2 d_{1}} c_{n}\left(\Omega_{Z}(2)\right)=\frac{\left(d_{1}-1\right)^{n+3}}{d_{1}\left(d_{1}-2\right)^{2}}+\frac{d_{1}-4}{4\left(d_{1}-2\right)^{2}}-\frac{n+3}{2\left(d_{1}-2\right)}+\frac{(-1)^{n}}{4 d_{1}}
$$

Lemma 2.4. (1) If $m \geq 2, d_{1}=3$, and either $d_{2}=2$ or $d_{2}=3$, then

$$
\frac{1}{m^{n} \cdot d_{1} d_{2}} c_{n}\left(\Omega_{Z}(2 m)\right)<2^{n+1}
$$

(2) If either $d_{1}, d_{2} \geq 3$ or $d_{1}>d_{2}=2$, then

$$
\frac{1}{d_{1} d_{2}} c_{n}\left(\Omega_{Z}(2)\right)>\left(d_{1}-1\right)^{n}
$$

Proof. (1) If $m \geq 2, d_{1}=3$, and $d_{2}=2$, by Lemma 2.3 (1),

$$
\frac{1}{6 m^{n}} c_{n}\left(\Omega_{Z}(2 m)\right)<\frac{(2 m-1)^{n+3}}{m^{n} \cdot 2 m(2 m-2)(2 m-3)} .
$$

The righthand side is smaller than 2^{n+1} for $m=2$. For $m \geq 3$, still it is bounded by 2^{n+1}, since

$$
\frac{(2 m-1)^{3}}{2 m(2 m-2)(2 m-3)}<2
$$

If $m \geq 2, d_{1}=3$, and $d_{2}=3$, by Lemma 2.3 (2),

$$
\frac{1}{9 m^{n}} c_{n}\left(\Omega_{Z}(2 m)\right)<\frac{(2 m-1)^{n+3}}{m^{n} \cdot 2 m(2 m-3)^{2}}
$$

The righthand side is smaller than 2^{n+1} for $m=2,3$. If $m \geq 4$, then still it is bounded by 2^{n+1}, since

$$
\frac{(2 m-1)^{3}}{2 m(2 m-3)^{2}}<2
$$

(2) We consider the three cases corresponding to (3), (4), and (5) of Lemma 2.3 in turn. First if $d_{1}>d_{2} \geq 3$, then the wanted inequality is obtained from the following claim.
For integers a, b such that $a>b \geq 2$ and for any positive integer n,

$$
\frac{1}{a-b}\left(\frac{a^{n+3}}{a^{2}-1}-\frac{b^{n+3}}{b^{2}-1}\right)>a^{n}
$$

This can be easily shown by induction on n.
Secondly if $d_{1}=d_{2} \geq 3$, then from (4) of Lemma 2.3, we easily get a much stronger inequality than wanted.

Finally if $d_{1} \geq 3$ and $d_{2}=2$, then since

$$
\left(d_{1}-1\right)^{n+3}>d_{1}^{2}\left(d_{1}-2\right)^{2}\left(d_{1}-1\right)^{n-1}
$$

we get

$$
\frac{\left(d_{1}-1\right)^{n+3}}{d_{1}\left(d_{1}-2\right)^{2}}>d\left(d_{1}-1\right)^{n-1}=\left(d_{1}-1\right)^{n}+\left(d_{1}-1\right)^{n-1}
$$

Since $\left(d_{1}-1\right)^{n-1}>\frac{n+3}{2\left(d_{1}-2\right)}$, the wanted inequality follows from (5) of Lemma 2.3.

3. Proof of Theorem 1.6

Let X be the subvariety of $\mathbb{P}^{n+2}, \operatorname{dim} X=n \geq 3$, as was described in the statement of Theorem 1.6. Let Y be a smooth subvariety of \mathbb{P}^{n+2} cut out by two smooth hypersurfaces of degree d_{1} and $d_{2}, d_{1} \geq d_{2}$. Assuming that there is a surjective morphism

$$
f: X \rightarrow Y
$$

of degree bigger than 1 , we have to show that either $d_{1}=d_{2}=2$ or $d_{1} d_{2} \leq 3$.

Let m be the integer such that $f^{*} \mathcal{O}_{Y}(1) \cong \mathcal{O}_{X}(m)$. First we assume $m \geq 2$ and prove that either $d_{1}=d_{2}=2$ or $d_{1} d_{2} \leq 3$.

By the inequality (2.1),

$$
\begin{equation*}
\frac{1}{d} c_{n}\left(\Omega_{Y}(2)\right) \leq \frac{1}{d m^{n}} c_{n}\left(\Omega_{X}(2 m)\right) \tag{3.1}
\end{equation*}
$$

where $d=6$ (resp. $d=9$) if X is an intersection of a quadric and a cubic (resp. an intersection of two cubics). By Lemma 2.4 (1), the right-hand side is bounded from above by 2^{n+1}.

If either $d_{1}, d_{2} \geq 3$ or $d_{1}>d_{2} \geq 2$, then by Lemma 2.4 (2), the left-hand side is bounded from below by $\left(d_{1}-1\right)^{n}$. Hence we get

$$
d_{1}-1<2^{1 / n} \cdot 2
$$

which implies $d_{1} \leq 3$. Now we need to exclude the cases $d_{1}=d_{2}=3$ and $d_{1}=3, d_{2}=2$. If $d_{1}=d_{2}=3$, then by Lemma 2.3 (4),

$$
\frac{1}{d_{1} d_{2}} c_{n}\left(\Omega_{Y}(2)\right)>\frac{n \cdot 2^{n+2}}{3} \geq 2^{n+2}
$$

If $d_{1}=3$ and $d_{2}=2$, then by Lemma 2.3 (5),

$$
\frac{1}{d_{1} d_{2}} c_{n}\left(\Omega_{Y}(2)\right)>\frac{2^{n+3}}{3}-n
$$

Both of these contradict to the inequality (3.1) together with the upper bound 2^{n+1} on the righthand side.

Now we finish the proof by considering the case where $m=1$. In this case, $\operatorname{deg} f=6 /\left(d_{1} d_{2}\right)$ (resp. $\operatorname{deg} f=9 /\left(d_{1} d_{2}\right)$). If $d_{1} d_{2}=6$ (resp. $d_{1} d_{2}=9$), then $\operatorname{deg} f=1$ and f must be an isomorphism. Otherwise, $d_{1} d_{2} \leq 3$. This finishes the proof of Theorem 1.6.

Remark 3.1. When $d_{1}=3$ and $d_{2}=1$, we can prove that $m=1$ by computing the Chern number $c_{n}\left(\Omega_{Y}(2)\right)$ explicitly. On the other hand, the Chern number inequality does not give any effective result for the cases where $d_{1}, d_{2} \leq 2$.

References

[1] M. Aprodu, S. Kebekus, T. Peternell, Galois coverings and endomorphisms of projective varieties, Math. Z. 260 (2008), no. 2, 431-449.
[2] E. Amerik, M. Rovinsky, A. Van de Ven, A boundedness theorem for morphisms between threefolds, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 2, 405-415.
[3] A. Beauville, Endomorphisms of hypersurfaces and other manifolds, Int. Math. Res. Notices 1 (2001), 53-58.
[4] I. Choe, Finite morphisms between Fano hypersurfaces, Asian J. Math. 7 (2003), no. 2, 231-238.
[5] I. Choe, Endomorphisms of hypersurfaces of Fano manifolds of Picard number 1, arXiv:0907.354v1, to appear in Math. Nachr.
[6] T. Peternell, Manifolds of semi-positive curvature, Lecture Notes in Math 1646 (1996), 98-142
*
Department of Mathematics
Konkuk University
Seoul 143-701, Republic of Korea
E-mail: ischoe@konkuk.ac.kr

[^0]: Received August 05, 2009; Accepted November 05, 2009.
 2000 Mathematics Subject Classification: Primary 14J45, 14M10.
 Key words and phrases: Fano manifold, surjective morphism, endomorphism, complete intersection, Hurwitz type formula.

 This work was supported by Korea Research Foundation Grant funded by the Korean Government (KRF-2008-331-C00033).

