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MORPHISMS BETWEEN FANO MANIFOLDS
GIVEN BY COMPLETE INTERSECTIONS

Insong CHOE®

ABSTRACT. We study the existence of surjective morphisms be-
tween Fano manifolds of Picard number 1, when the source is given
by the intersection of a cubic hypersurface and either a quadric or
another cubic hypersurface in a projective space.

1. Introduction

For two Fano manifolds X and Y of Picard number 1, one may ask
if there is a surjective morphism

f: X =Y.

In particular, one may ask if a Fano manifold X of Picard number 1
admits a surjective endomorphism of degree bigger than 1. On these
questions, there have been several attempts to confirm the following
conjectures. Recall that the index i(X) of X is defined by the number
1 such that

where Ox (1) is the ample generator of Pic(X).

CONJECTURE 1.1. (Peternell, [6]) If there is a surjective morphism
f:X—>Y
between Fano manifolds X and Y of Picard number 1, then

i(X) < i(Y).
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CONJECTURE 1.2. (See [1], Conjecture 1.1) If a Fano manifold X of
Picard number 1 admits a surjective endomorphism of degree > 1, then
X 2P O

Beauville observed that the Chern number inequality devised by
Amerik, Rovinsky, and Van de Ven [2] can be used to prove the fol-
lowing.

PROPOSITION 1.3. ([3]) A smooth hypersurface in P"*! of degree d
admits no endomorphisms of degree bigger than 1ifn > 2 andd > 3. [

It has been observed that the same Chern number inequality can
actually be applied to more general situations.

PROPOSITION 1.4. ([4]) Let X andY be smooth Fano hypersurfaces
in P"1 n > 3, of degree dx and dy respectively, dx,dy > 3. If there
is a surjective morphism

f: X—>Y,
then either ix < iy or f is an isomorphism. ]

ProprosITION 1.5. ([5], Theorem 1.5) Let V be a Fano manifold
of Picard number 1. Assume that dim V' > 4 and the ample generator
Oy (1) of Pic(V) is very ample. If X is a smooth hypersurface of V' cut
out by a member of |Oy(d)|, d > 4, then X admits no endomorphism
of degree bigger than 1. O

But note here that we need the conditions “d > 3” in Theorem 1.3,
“dx,dy > 3" in Theorem 1.4, and “d > 4” in Theorem 1.5. This
kind of degree condition is required simply because the Chern number
inequality, which is the main tool of proof, does not work effectively
when d < 2.

A natural question in this direction are the following:

e Can Propositions 1.4 and 1.5 be generalized to the case of complete
intersections?
e [s the statement of Proposition 1.5 still true for the case when d = 37

The first question for Proposition 1.5 can be answered affirmatively
if it is a complete intersection of k£ hypersurfaces of degree dy,ds, - - - , d
where max{dy,--- ,di} > 4: see Theorem 3.1 of [5].

In this paper, we consider the cases of (1) the intersection of a quadric
and a cubic hypersurface and (2) the intersection of two cubic hyper-
surfaces in a projective space. For m > 3 (resp. n > 4), projective
manifolds given by the intersection of a smooth quadric and a smooth
cubic hypersurface (resp. of two smooth cubic hypersurfaces) in P72
are Fano manifolds of Picard number 1. We prove the following.
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THEOREM 1.6. Let X be either a smooth quadric or a smooth cubic
hypersurface in P"t2, n > 3. Let X be a submanifold of dimension n
given by the intersection of X and a cubic hypersurface in P"*2. Let Y
be a smooth subvariety of P"*2 cut out by two smooth hypersurfaces of
degree dy and do respectively. If there is a surjective morphism

f: X—=Y
of degree bigger than 1, then either di = dy = 2 or didy < 3. O

Note that i(Y) =n + 3 — (di + d2). Hence the above result implies:
(i) X admits no endomorphisms of degree bigger than 1, and
(ii) if there is a surjective morphism f : X — Y where Y is a smooth
subvariety of P"*? cut out by two smooth hypersurfaces, then either
i(X) <i(Y) or fis an isomorphism.

In particular, we get the following.

COROLLARY 1.7. Let X be a smooth subvariety of P"*? cut out
by two smooth hypersurfaces of degree di and ds respectively, where
di > do. If n > 3 and dy > 3, then X does not admit an endomorphism
of degree bigger than 1.

Proof. When d; > 4, this is a special case of Theorem 3.1 of [5].
When dy = 1, X is a hypersurface of P**! of degree d; > 3 and the
wanted result was shown in [3]. For the remaining cases where d; = 3
and do > 2, the wanted result follows from Theorem 1.6. [

2. Chern number inequalities

First let us recall the inequality proven by Amerik, Rovinsky and Van
de Ven.

LEMMA 2.1. ([2], Corollary 1.2) Let f : X — Y be a finite morphism
between smooth projective varieties of dimension n. Let L be a line
bundle on Y such that Qy (L) is globally generated. Then

deg(f) - en(Qy (L)) < en(2x(f7L))-

COROLLARY 2.2. Let X and Y be smooth subvarieties of P"*? of
dimension n > 3 cut out by two smooth hypersurfaces of degree x1, xo
and y1, yo respectively. If there is a surjective morphism f : X — Y,
then

1 1

(2.1) @Cn(QY(Q)) < mcn(QX@m))a
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where m is the number given by f*Oy(l) = Ox(m) for the ample
generators Ox (1) and Oy (1) of X and Y respectively.

Proof. Since Q(2) is globally generated on P"*2 so is its quotient
Qy(2). By Lemma 2.1,

deg(f) - en(Qy(2)) < ca(Qx(2m)).

. . Ox(1)" T1T2
The inequality (2.1) follows from de =m" =m"—=. 0O
quality (2.1) g(f) Oy (1) i

Now we compute the involved Chern numbers explicitly. Let Z be a
smooth subvariety of P"*2 cut out by two smooth hypersurfaces H; and
Hy of degree d; and ds respectively. Assume that n > 3 so that we get
the isomorphism Pic(Z) =2 Pic(P"2) = Z given by the restriction of line
bundles.

We may use the (twisted) Euler sequence and the conormal sequences:

0— Qpns2(2m)|z — Oz(2m — 1)) 04(2m) — 0,
0— Om,(—=di) = Qpn+2|g, — Qg — 0,
0— Oz<—d2) —>QH1’2—>Qz—>O.

From these we get
c(Qz(2m))
= (14 (2m — 1)R)"T3(1 + 2mh) " (1 + (2m — d1)h) " (1 + (2m — da)h) !,

where h is the hyperplane section class of Z. Therefore the top Chern
class is computed by the residue at 0:

cn(2z(2m)) = A" - Resp (w),

where

(14 (2m — 1)z)"*3

T 2 (L 2mz) (1 + (2m — d1)z)(1 + (2m — da)2) dz.

Now we can use the residue theorem to compute ¢, (22 (2m)).
(Case 1) If dy,da, 2m are different to each other, then

Resp w = — (Res_; /o, w + Res_j/(om—q;) w

+ Res_i/(om—dy,) w + Resy w),
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where
(_1)n+1
Res_l/gm w = 72md1d2 ,
(d; — 1)n+3 .
Res_1/om-ayw = &@m —d)(d —d;)" 1<i#j<2,
(2m — 1)n+3

Resoo w T T omm—d)(2m — da)

(Case 2) If dy = dg > 3, then

Resp w = —(Res_j /9, w + Res;j g, —om) w + Resy w),

where
-1 n+1
Res,l/Qmw - (2773d27
1
(dl _ 1)n+2
R = 2 2)d 1
es—l/(Qm—dl)w d%(dl _ 2)2 [ m{(n + ) 1 + }
—(n+ 1)d} — 2d],
- (2m — 1)n+3
Resocw - 2m(2m — dy)?’

(Case 3) If dy > 3,d2 = 2, and m = 1, then
Resp w = —(Res_; 5 w + Resj/q,—2) w + Resy w),

where
Res jpw = (4;1’
(dy —1)"+3
Resi /4,2y w = Cdi(dy —2)?
n+3 d — 4

Resow = =2 " a(a =2

From these computations, we get the following formulae.

LEMMA 2.3. (1) If dy = 3,d2 = 2 and m > 2, then

1 _ (2m o 1)n+3 2n+3
g m)) = S S @m—3)  3@m—3)
R

2(2m — 2) T om
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(2) Ifdl - dg == 3, then

1 (2m — 1) +3
Zen(Qz(2m)) = L
gen(2(2m)) = o o —3)2
ﬂ(ﬁ +14m — 9n — 15) + L
9(2m —g)2 A A 8m
(3) Ifdl > dy > 3, then
1 1 di —1 n+3 do — 1 n+3
2oz = 2o (Gt - s )
dids di—dy \ di(d; —2)  do(dz —2)

1 (—1)"
(d—2)(ds—2) | 2didy

T3

(4) Ifdl = d2 Z 3, then

1. (Q(2)) = n(dy —1)"*2  (dy — 1)"*2(d? — 2d; — 2)
a2 di(dy —2) d3(dy — 2)?
1 (=1)"
o 22 T 2

(5) Ifdl >3 and dg = 2, then
1 (dy — 1)n+3 dy —4 n+3 (1)

—en(Q2(2)) = - .
20,22 = e T i o 2=y T 4,
LEMMA 2.4. (1) If m > 2, dy = 3, and either do = 2 or do = 3, then
1
————cn(Q27(2 ontl,
o eal@a(2m) <
(2) If either di,do > 3 or di > dy = 2, then
1
——n(Qz(2 di — 1™
en(@2(2) >~ 1)
Proof. (1) If m > 2, d; = 3, and dy = 2, by Lemma 2.3 (1),
1 (2m — 1)n+3

——cu(Qz(2m)) <

6m m" - 2m(2m — 2)(2m — 3)°

The righthand side is smaller than 2"+ for m = 2. For m > 3, still it is
bounded by 27t since

(2m —1)3
2m(2m — 2)(2m — 3)

< 2.
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If m > 2, d; = 3, and dy = 3, by Lemma 2.3 (2),
1 (2m — 1)n+3

——n(Qz7(2 .

9m"cn( 2(2m)) < m” - 2m(2m — 3)?2
The righthand side is smaller than 2"t for m = 2,3. If m > 4, then
still it is bounded by 2"+, since

(2m —1)3
2m(2m — 3)?

(2) We consider the three cases corresponding to (3), (4), and (5) of
Lemma 2.3 in turn. First if d; > do > 3, then the wanted inequality is

obtained from the following claim.
For integers a,b such that a > b > 2 and for any positive integer n,

1 n+3 bn+3
<a ) > a”.

< 2.

a—b\a2—1 b2—1
This can be easily shown by induction on n.
Secondly if di = da > 3, then from (4) of Lemma 2.3, we easily get a

much stronger inequality than wanted.
Finally if d; > 3 and dy = 2, then since

(dy — )" > d3(dy — 2)%(dy — 1)1,

we get
dp —1)"+3 - -
Elll(dl—)Q)z > d(dy — )" =(dy — )" + (dy — 1)L
Since (d —1)"" > 2(Z+32), the wanted inequality follows from (5) of
L —
Lemma 2.3. O

3. Proof of Theorem 1.6

Let X be the subvariety of P"*2, dim X = n > 3, as was described
in the statement of Theorem 1.6. Let Y be a smooth subvariety of P2
cut out by two smooth hypersurfaces of degree di and do, di > do.
Assuming that there is a surjective morphism

f: X—=Y
of degree bigger than 1, we have to show that either dy = do = 2 or
dids < 3.
Let m be the integer such that f*Oy (1) = Ox(m). First we assume
m > 2 and prove that either di = do = 2 or dijds < 3.
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By the inequality (2.1),

(3.1) Loy (2) < - en(@x(2m),

where d = 6 (resp. d = 9) if X is an intersection of a quadric and a cubic
(resp. an intersection of two cubics). By Lemma 2.4 (1), the right-hand
side is bounded from above by 27t

If either di,d2 > 3 or dy > dy > 2, then by Lemma 2.4 (2), the
left-hand side is bounded from below by (d; — 1)". Hence we get

dy—1<2Ym. 9

which implies d; < 3. Now we need to exclude the cases di = dy = 3
and d; = 3,dy = 2. If d; = dy = 3, then by Lemma 2.3 (4),

1 n - 2n+2

—cn(Qy (2 > 2nt2,
ey (@) > T
If d; = 3 and dy = 2, then by Lemma 2.3 (5),
1 on+3
——cn(Qy (2 —n.
Tre( (@) > T —n

Both of these contradict to the inequality (3.1) together with the upper
bound 2"+ on the righthand side.

Now we finish the proof by considering the case where m = 1. In
this case, deg f = 6/(d1d2) (resp. deg f = 9/(d1dz)). If dida = 6 (resp.
didy = 9), then deg f = 1 and f must be an isomorphism. Otherwise,
di1do < 3. This finishes the proof of Theorem 1.6. L]

REMARK 3.1. When d; = 3 and do = 1, we can prove that m = 1 by
computing the Chern number ¢, (Qy(2)) explicitly. On the other hand,
the Chern number inequality does not give any effective result for the
cases where dy,doy < 2.
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