• Title/Summary/Keyword: hydrothermal stability

Search Result 99, Processing Time 0.034 seconds

The Effect of Initial pH on the Synthesis of Mesoporous Molecular Sieve, MCM-41 (MCM-41 분자체의 합성에 초기 pH가 미치는 영향)

  • Kim, Wha-Jung;Yoo, Jae-Churl
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.463-472
    • /
    • 1997
  • A mesoporous molecular sieve, MCM-41, was synthesized and the effent of various initial pH of reaction mixtures on the synthesis and physical properties of MCM-41 was investigated. Adjustment of initial pH for reaction mixtures was made before starting hydrothermal reaction rather than during the reaction. Highly crystalline MCM-41 which shows pore diameters of $30{\AA}$ to $40{\AA}$ and specific surface areas greater than $1000m^2/g$ has been successfully prepared through a single adjustment of initial pH. Results also suggest that the initial pH adjustment has a significant effect on the formation of MCM-41 with a long-range ordered hexagonal array and an excellent thermal stability. Finally, it is speculated that the adjustment of initial pH might accelerate the dissolution of stable polymeric sodium silicate to highly reactive monomeric sodium silicate resulting in well-ordered MCM-41.

  • PDF

Hierarchical Porous 3D gel of the Co3O4/graphene with Enhanced Catalytic Performance for Green Catalysis (녹색 촉매반응을 위한 코발트 옥사이드/그래핀의 계층적 다공성 3D 젤)

  • Jeong, Jae-Min;Jang, Sukhyeun;Kim, Yunsu;Kim, Hyun Bin;Kim, Do Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.404-409
    • /
    • 2018
  • The integration of organic and inorganic building blocks into hierarchical porous architectures makes potentially desirable catalytic material in many catalytic applications due to their combination of dissimilar components and well-constructed reactant transport path. In this study, we prepared the hierarchical porous $Co_3O_4@graphene$ 3D gel by hydrothermal method to achieve high catalytic performance in PET glycolysis reaction. Obtained $Co_3O_4@graphene$ 3D gel consisted of interconnected networks of $Co_3O_4$ and graphene sheets, providing large number of accessible active sites for efficient catalytic reaction. These structural merits from synergistic effect of $Co_3O_4$ and graphene gave a high performance in the PET degradation reaction giving high conversion yield of BHET, fast degradation rate of PET, and remarkable stability.

Preparation of ZnO Nano Powder and High-transparent UV Shielding Dispersion Sol (ZnO 나노분말 및 고투명성 자외선 차단 분산 졸의 제조)

  • Lee, Hun Dong;Kim, Jin Mo;Son, Dae Hee;Lee, Seung-Ho;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.391-395
    • /
    • 2013
  • In this study, zinc oxide (ZnO) nano powder, well known as an UV absorbing material, was synthesized with three synthetic conditions by the hydrothermal method. After ZnO nano powder was surface-modified with various silane coupling agents to improve dispersion property, a dispersion sol was prepared with dispersant for 72 h by the ball-milling of surface-modified ZnO nano powder. The dispersion sol, prepared by modifying the surface of the ZnO nano powder with an average size of about 30 nm using 3-chloropropyl trimethoxy silane, showed an excellent dispersion stability with a high UV-shielding and visible trnasparency.

PEDOT:PSS Enhanced Electrochemical Capacitive Performance of Graphene-Templated δ-MnO2

  • Sinan, Neriman;Unur, Ece
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.50-59
    • /
    • 2020
  • Birnessite-type manganese dioxide (δ-MnO2) with hierarchical micro-/mesoporosity was synthesized via sacrificial graphene template approach under mild hydrothermal conditions for the first time. Graphene template was obtained by a surfactant (cetyltrimethylammonium bromide, CTAB) assisted liquid phase exfoliation (LPE) in water. A thin PEDOT:PSS (poly (3,4-ethylene dioxythiophene): poly (styrene sulfonate)) layer was applied to improve electrical conductivity and rate capability of MnO2. The MnO2 (535 F g-1 at 1 A g-1 and 45 F g-1 at 10 A g-1) and MnO2/PEDOT:PSS nanocomposite (550 F g-1 at 1 A g-1 and 141 F g-1 at 10 A g-1) delivered electrochemical performances superior to their previously reported counterparts. An asymmetric supercapacitor, composed of MnO2/PEDOT:PSS (positive) and Fe3O4/Carbon (negative) electrodes, provided a maximum specific energy of 18 Wh kg-1 and a maximum specific power of 4.5 kW kg-1 (ΔV= 2 V, 1M Na2SO4) with 85% capacitance retention after 1000 cycles. The graphene-templated MnO2/PEDOT:PSS nanocomposite obtained by a simple and green approach promises for future energy storage applications with its remarkable capacitance, rate performance and cycling stability

Zeolite Membranes: Functionalizing of Properties by Tailored Compositions (제올라이트 분리막: 조성 변경을 통한 분리막 성질의 조절)

  • Richter, Hannes;Weyd, Marcus;Simon, Adrian;Kuhnert, Jan-Thomas;Gunther, Christiane;Voigt, Ingolf;Michaelis, Alexander
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.469-476
    • /
    • 2017
  • Membrane separation is a technology of low energy consumption. Membranes made of zeolites are of great interest because their fixed and open pores in the size of small molecules inside crystalline structures allow separation processes under harsh conditions. While zeolite NaA (LTA-type) is industrially used for dewatering of organic solvents, its pore size and thermal and hydrothermal stability can be tuned by exchange of framework and extra-framework elements. SOD with pores of only 0.28 nm is of great interest for $H_2$- und $H_2O$-separation and also can be tuned by ion exchange. Zeolites open the opportunity to create membranes of adapted separation behavior for small molecules in conditions of surrounding technical processes.

Ni Nanoparticle-Graphene Oxide Composites for Speedy and Efficient Removal of Cr(VI) from Wastewater

  • Wang, Wan-Xia;Zhao, Dong-Lin;Wu, Chang-Nian;Chen, Yan;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.345-352
    • /
    • 2021
  • In this study, Ni nanoparticle supported by graphene oxide (GO) (Ni-GO) is successfully synthesized through hydrothermal synthesis and calcination, and Cr(VI) is extracted from aqueous solution. The morphology and structure of Ni-GO composites are characterized by scanning electron microscopy (SEM), trans mission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). High-resolution transmission electron microscopy (HRTEM) and XRD confirms the high dispersion of Ni nanoparticle after support by GO. Loading Ni on GO can obviously enhance the stability of Ni-GO composites. It can be calculated from TGA that the mass percentage of Ni is about 60.67 %. The effects of initial pH and reaction time on Cr(VI) removal ability of Ni-GO are investigated. The results indicate that the removal efficiency of Cr(VI) is greater than that of bared GO. Ni-GO shows fast removal capacity for Cr(VI) (<25 min) with high removal efficiency. Dynamic experiments show that the removal process conforms to the quasi-second order model of adsorption, which indicates that the rate control step of the removal process is chemical adsorption. The removal capacity increases with the increase of temperature, indicating that the reaction of Cr(VI) on Ni-GO composites is endothermic and spontaneous. Combined with tests and characterization, the mechanism of Cr(VI) removal by rapidly adsorption on the surface of Ni-GO and reduction by Ni nanoparticle is investigated. The above results show that Ni-GO can be used as a potential remediation agent for Cr(VI)-contaminated groundwater.

Facile Synthesis of g-C3N4 Modified Bi2MoO6 Nanocomposite with Improved Photoelectronic Behaviors

  • Zhu, Lei;Tang, Jia-Yao;Fan, Jia-Yi;Sun, Chen;Meng, Ze-Da;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.593-600
    • /
    • 2021
  • Herein, a series of g-C3N4 modified Bi2MoO6 nanocomposites using Bi2MoO6 and melamine as original materials are fabricated via sintering process. For presynthesis of Bi2MoO6 an ultrasonic-assisted hydrothermal technique is researched. The structure and composition of the nanocomposites are characterized by Raman spectroscopy, X-ray diffraction (XRD), and high-resolution field emission scanning electron microscopy (SEM). The improved photoelectrochemical properties are studied by photocurrent density, EIS, and amperometric i-t curve analysis. It is found that the structure of Bi2MoO6 nanoparticles remains intact, with good dispersion status. The as-prepared g-C3N4/Bi2MoO6 nanocomposites (BMC 5-9) are selected and investigated by SEM analysis, which inhibits special morphology consisting of Bi2MoO6 nanoparticles and some g-C3N4 nanosheets. The introduction of small sized g-C3N4 nanosheets in sample BMC 9 is effective to improve the charge separation and transfer efficiency, resulting in enhancing of the photoelectric behavior of Bi2MoO6. The improved photoelectronic behavior of g-C3N4/Bi2MoO6 may be attributed to enhanced charge separation efficiency, photocurrent stability, and fast electron transport pathways for some energy applications.

Synthesis of Hollow Carbon Spheres with Various Diameters and Their Lithium Storage Properties (다양한 직경의 속이 빈 탄소구체의 제조 및 리튬 저장 특성)

  • Seulgi Shin;Hyeokrae Cho;Yong-Jae Jung;Sang-Mo Koo;Jong-Min Oh;Weon Ho Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.10-15
    • /
    • 2023
  • The carbonaceous materials have attracted much attention for utilization of anode materials for lithium-ion batteries. Among them, hollow carbon spheres have great advantages (high specific capacity and good rate capability) to replace currently used graphite anode materials, due to their unique features such as high surface areas, high electrical conductivities, and outstanding chemical and thermal stability. Herein, we have synthesized various sizes of hollow carbon spheres by a facile hardtemplate method and investigated the anode properties for lithium-ion batteries. The obtained hollow carbon spheres have uniform diameters of 350 ~ 600 nm by varying the template condition, and they do not have any cracks after the optimization of the process. Increasing the diameter of hollow carbon spheres decreases their specific capacities, since the larger hollow carbon spheres have more useless spaces inside that could have a disadvantage for lithium storage. The hollow carbon spheres have outstanding rate and cyclic performance, which is originated from the high surface area and high electrical properties of the hollow carbon spheres. Therefore, hollow carbon spheres with smaller diameters are expected to have higher specific capacities, and the noble channel structures through various doping approaches can give the great possibility of high lithium storage properties.

MOF-Derived FeCo-Based Layered Double Hydroxides for Oxygen Evolution Reaction

  • Fang Zheng;Mayur A. Gaikwad;Jin Hyeok Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.377-384
    • /
    • 2023
  • Exploring earth-abundant, highly effective and stable electrocatalysts for electrochemical water splitting is urgent and essential to the development of hydrogen (H2) energy technology. Iron-cobalt layered double hydroxide (FeCo-LDH) has been widely used as an electrocatalystfor OER due to its facile synthesis, tunable components, and low cost. However, LDH synthesized by the traditional hydrothermal method tends to easily agglomerate, resulting in an unstable structure that can change or dissolve in an alkaline solution. Therefore, studying the real active phase is highly significant in the design of electrochemical electrode materials. Here, metal-organic frameworks (MOFs) are used as template precursors to derive FeCo-LDH from different iron sources. Iron salts with different anions have a significant impact on the morphology and charge transfer properties of the resulting materials. FeCo-LDH synthesized from iron sulfate solution (FeCo-LDH-SO4) exhibits a hybrid structure of nanosheets and nanowires, quite different from other electrocatalysts that were synthesized from iron chloride and iron nitrate solutions. The final FeCo-LDH-SO4 had an overpotential of 247 mV with a low Tafel-slope of 60.6 mV dec-1 at a current density of 10 mA cm-2 and delivered a long-term stability of 40 h for the OER. This work provides an innovative and feasible strategy to construct efficient electrocatalysts.

The High temperature stability limit of talc, $Mg_3Si_4O_{10}(OH)_2$ (활석 $Mg_3Si_4O_{10}(OH)_2$의 고온 안정영역에 관한 실험적 연구)

  • 조동수;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.123-132
    • /
    • 1997
  • In the system $MgO-SiO_2-H_2O$, Talc[$Mg_3Si_4O_{10}(OH)_2$] has been synthesized hydrothermally at 200 MPa, $600^{\circ}C$ from the oxide mixture of the bulk composition of talc. The oxide mixture of the bulk composition of anthophyllite$[Mg_7Si_8O_{22}(OH)2]$ converted to talc, enstatite $(MgSiO_3)$, quartz at 200 MPa, $750^{\circ}C$ with excess of $H_2O$. In low to medium pressure metramorphism, enstatite-talc assemblage is metastable relative to anthophyllite with the reaction talc + 4 enstatite=anthophyllite (Greenwood, 1963). The high temperature stability of talc is bounded with the dehydration reaction to anthophyllite rather than that to enstatite(Greenwood, 1963; Chernosky et al., 1985). Therefore our experiment result assemblage, enstatite-talc-quatz at 200 MPa, $750^{\circ}C$ from oxide mixture of bulk compostion of anthophyllite is metastable assemblage. The hydrothermal experiment performed at 41 to 243 MPa, 680 to $760^{\circ}C$ with the starting material composed of synthetic talc, enstatite and quartz. Talc or enstatite grows during the runs and no extra phases including anthophyllite nucleated. Based on the increase or decrease of the each phase from run products, one of the possible reactions is talc=3 enstatite+quartz+H_2O$. The reversal bracket of the reaction is 699 to $700^{\circ}C$ at 100 MPa. Talc is stable up to $740^{\circ}C$ at 200 MPa and enstatite grow at $680^{\circ}C$, 40 MPa and at $760^{\circ}C$, 250 MPa. Though the high temperature limit of talc around 200 MPa is bounded thermodynamically by the reaction, 7 talc=3 anthophyllite+4 quartz+4 H_2O$, talc persisted throughout the previous reaction up to the reaction, talc=3 enstatite+quartz+$H_2O$.

  • PDF