DOI QR코드

DOI QR Code

Synthesis of Hollow Carbon Spheres with Various Diameters and Their Lithium Storage Properties

다양한 직경의 속이 빈 탄소구체의 제조 및 리튬 저장 특성

  • Seulgi, Shin (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Hyeokrae, Cho (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Yong-Jae, Jung (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Sang-Mo, Koo (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Jong-Min, Oh (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Weon Ho, Shin (Department of Electronic Materials Engineering, Kwangwoon University)
  • 신슬기 (광운대학교 전자재료공학과) ;
  • 조혁래 (광운대학교 전자재료공학과) ;
  • 정용재 (광운대학교 전자재료공학과) ;
  • 구상모 (광운대학교 전자재료공학과) ;
  • 오종민 (광운대학교 전자재료공학과) ;
  • 신원호 (광운대학교 전자재료공학과)
  • Received : 2022.10.22
  • Accepted : 2022.10.28
  • Published : 2023.01.01

Abstract

The carbonaceous materials have attracted much attention for utilization of anode materials for lithium-ion batteries. Among them, hollow carbon spheres have great advantages (high specific capacity and good rate capability) to replace currently used graphite anode materials, due to their unique features such as high surface areas, high electrical conductivities, and outstanding chemical and thermal stability. Herein, we have synthesized various sizes of hollow carbon spheres by a facile hardtemplate method and investigated the anode properties for lithium-ion batteries. The obtained hollow carbon spheres have uniform diameters of 350 ~ 600 nm by varying the template condition, and they do not have any cracks after the optimization of the process. Increasing the diameter of hollow carbon spheres decreases their specific capacities, since the larger hollow carbon spheres have more useless spaces inside that could have a disadvantage for lithium storage. The hollow carbon spheres have outstanding rate and cyclic performance, which is originated from the high surface area and high electrical properties of the hollow carbon spheres. Therefore, hollow carbon spheres with smaller diameters are expected to have higher specific capacities, and the noble channel structures through various doping approaches can give the great possibility of high lithium storage properties.

Keywords

Acknowledgement

본 연구는 산업통상자원부 한국산업기술진흥원(Korea Institute for Advancement of Technology (KIAT)) 산업혁신인재성장지원사업(P0012451), 한국산업기술평가관리원(Korea Evaluation Institute of Industrial Technology (KEIT)) 소재부품기술개발사업(RS-2022-00154720) 및 과학기술정보통신부 한국연구재단(NRF-2022R1A2C1010617)의 지원을 받아 수행된 연구임.

References

  1. J. Hong, J. Kor. Electrochem. Soc., 24, 77 (2021). [DOI: https://doi.org/10.5229/JKES.2021.24.4.77]
  2. T. Wang, K. Tseng, J. Zhao, and Z. Wei, Appl. Energ., 134, 229 (2014). [DOI: https://doi.org/10.1016/j.apenergy.2014.08.013]
  3. S. Shahid and M. Agelin-Chaab, Thermal Science and Engineering Progress, 5, 351 (2018). [DOI: https://doi.org/10.1016/j.tsep.2018.01.003]
  4. N. H. Choi and J. D. Lee, Korean Chem. Eng. Res., 59, 326 (2021). [DOI: https://doi.org/10.9713/kcer.2021.59.3.326]
  5. M. V. Reddy, G. Subba Rao, and B.V.R. Chowdari, Chem. Rev., 113, 5364 (2013). [DOI: https://doi.org/10.1021/cr3001884]
  6. Z. Yang, J. Shen, and L. A. Archer, J. Mater. Chem., 21, 11092 (2011). [DOI: https://doi.org/10.1039/C1JM10902B]
  7. J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacin, Adv. Mater., 22, E170 (2010). [DOI: https://doi.org/10.1002/adma.201000717]
  8. K.L.A. Cao, Y. Kitamoto, F. Iskandar, and T. Ogi, Adv. Powder Technol., 32, 2064 (2021). [DOI: https://doi.org/10.1016/j.apt.2021.04.012]
  9. V. Etacheri, C. Wang, M. J. O'Connell, C. K. Chan, and V. G. Pol, J. Mater. Chem. A, 3, 9861 (2015). [DOI: https://doi.org/10.1039/C5TA01360G]
  10. W. Yuan, J. Liu, W. Yi, L. Liang, Y. Zhu, and X. Chen, J. Colloid Interface Sci., 573, 232 (2020). [DOI: https://doi.org/10.1016/j.jcis.2020.03.126]
  11. J. Zang, J. Ye, H. Qian, Y. Lin, X. Zhang, M. Zheng, and Q. Dong, Electrochim. Acta, 260, 783 (2018). [DOI: https://doi.org/10.1016/j.electacta.2017.12.037]
  12. D. Wang, R. A. Caruso, and F. Caruso, Chem. Mater., 13, 364 (2001). [DOI: https://doi.org/10.1021/cm001184j]
  13. Y. Yang, S. Jin, Z. Zhang, Z. Du, H. Liu, J. Yang, H. Xu, and H. Ji, ACS Appl. Mater. Inter., 9, 14180 (2017). [DOI: https://doi.org/10.1021/acsami.6b14840]
  14. X. Fang, S. Liu, J. Zang, C. Xu, M.-S. Zheng, Q.-F. Dong, D. Sun, and N. Zheng, Nanoscale, 5, 6908 (2013). [DOI: https://doi.org/10.1039/C3NR01723K]
  15. R. Liu, S. M. Mahurin, C. Li, R. R. Unocic, J. C. Idrobo, H. Gao, S. J. Pennycook, and S. Dai, Angew. Chem. Int. Ed., 50, 6799 (2011). [DOI: https://doi.org/10.1002/anie.201102070]
  16. S. Ikeda, K. Tachi, Y. H. Ng, Y. Ikoma, T. Sakata, H. Mori, T. Harada, and M. Matsumura, Chem. Mater., 19, 4335 (2007). [DOI: https://doi.org/10.1021/cm0702969]
  17. R. J. White, K. Tauer, M. Antonietti, and M.-M. Titirici, J. Am. Chem. Soc., 132, 17360 (2010). [DOI: https://doi.org/10.1021/ja107697s]
  18. X. Yang, Y. Li, P. Zhang, L. Sun, X. Ren, and H. Mi, Carbon, 157, 70 (2020). [DOI: https://doi.org/10.1016/j.carbon.2019.10.008]
  19. X. Fang, J. Zang, X. Wang, M.-S. Zheng, and N. Zheng, J. Mater. Chem. A, 2, 6191 (2014). [DOI: https://doi.org/10.1039/C3TA14881E]
  20. F. Holtstiege, T. Koc, T. Hundehege, V. Siozios, M. Winter, and T. Placke, ACS Applied Energy Materials, 1, 4321 (2018). [DOI: https://doi.org/10.1021/acsaem.8b00945]
  21. S. W. Prescott, Macromolecules, 36, 9608 (2003). [DOI: https://doi.org/10.1021/ma034845h]
  22. J. Zhang, X. Zhong, H. Chen, Y. Gao, and H. Li, Electrochim. Acta, 148, 203 (2014). [DOI: https://doi.org/10.1016/j.electacta.2014.10.023]
  23. E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo, and I. Honma, Nano Lett., 8, 2277 (2008). [DOI: https://doi.org/10.1021/nl800957b]
  24. Y. Sun, J. Tang, K. Zhang, J. Yuan, J. Li, D.-M. Zhu, K. Ozawa, and L.-C. Qin, Nanoscale, 9, 2585 (2017). [DOI: https://doi.org/10.1039/C6NR07650E]
  25. R. Yu, T. Suzuki, Y. Ito, N. Djourelov, K. Kondo, and V. Shantarovich, Chem. Phys. Lett., 406, 101 (2005). [DOI: https://doi.org/10.1016/j.cplett.2005.02.099]
  26. W. H. Shin, H. M. Jeong, B. G. Kim, J. K. Kang, and J. W. Choi, Nano Lett., 12, 2283 (2012). [DOI: https://doi.org/10.1021/nl3000908]
  27. J. Ye, J. Zang, Z. Tian, M. Zheng, and Q. Dong, J. Mater. Chem. A, 4, 13223 (2016). [DOI: https://doi.org/10.1039/C6TA04592H]