DOI QR코드

DOI QR Code

Zeolite Membranes: Functionalizing of Properties by Tailored Compositions

제올라이트 분리막: 조성 변경을 통한 분리막 성질의 조절

  • Richter, Hannes (Fraunhofer Institute for Ceramic Technologies and Systems - Hermsdorf branch) ;
  • Weyd, Marcus (Fraunhofer Institute for Ceramic Technologies and Systems - Hermsdorf branch) ;
  • Simon, Adrian (Fraunhofer Institute for Ceramic Technologies and Systems - Hermsdorf branch) ;
  • Kuhnert, Jan-Thomas (Fraunhofer Institute for Ceramic Technologies and Systems - Hermsdorf branch) ;
  • Gunther, Christiane (Fraunhofer Institute for Ceramic Technologies and Systems - Hermsdorf branch) ;
  • Voigt, Ingolf (Fraunhofer Institute for Ceramic Technologies and Systems - Hermsdorf branch) ;
  • Michaelis, Alexander (Fraunhofer Institute for Ceramic Technologies and Systems - Hermsdorf branch)
  • Received : 2017.11.30
  • Accepted : 2017.12.13
  • Published : 2017.12.31

Abstract

Membrane separation is a technology of low energy consumption. Membranes made of zeolites are of great interest because their fixed and open pores in the size of small molecules inside crystalline structures allow separation processes under harsh conditions. While zeolite NaA (LTA-type) is industrially used for dewatering of organic solvents, its pore size and thermal and hydrothermal stability can be tuned by exchange of framework and extra-framework elements. SOD with pores of only 0.28 nm is of great interest for $H_2$- und $H_2O$-separation and also can be tuned by ion exchange. Zeolites open the opportunity to create membranes of adapted separation behavior for small molecules in conditions of surrounding technical processes.

분리막을 이용한 분리 기술은 에너지 소요가 적다. 제올라이트를 기반으로 제작한 분리막의 경우, 결정 구조 내에 작은 분자 크기의 기공을 갖고 있어 이를 이용하여 가혹한 조건에서도 분리가 가능하기 때문에, 그 관심도가 높다. NaA (LTA 유형의 제올라이트) 제올라이트의 경우, 산업적으로 유기 용매에서 수분을 제거하는 데 많이 사용되는 데, 해당 기공 크기나 열적/수열안정성은 제올라이트 내부나 외부의 원소를 바꿔줌으로써 조절할 수 있다. 더 작은 0.28 nm 크기를 지닌 SOD 유형의 제올라이트의 경우, 수소나 물 분리에 적합하여 그 관심도가 높아지고 있으며, 이 제올라이트 유형 또한, 이온교환과 같은 방법으로 성질을 변경할 수 있다. 제올라이트는 주변 기술 및 공정 조건에 맞게 작은 분자들을 적절하게 분리할 수 있는 분리막을 창출할 수 있다는 장점을 지닌 소재이다.

Keywords

References

  1. US Department of Energy; Industrial Technologies Program; Energy Efficiency and Renewable Energy, Report "Materials for Separation Technologies: Energy and Emission Reduction Opportunities" (2005).
  2. H. Richter, A. Piorra, and G. Tomandl, "Developing of ceramic membranes for nanofiltration", Key Engineering Materials, 132-136, 1715 (1997). https://doi.org/10.4028/www.scientific.net/KEM.132-136.1715
  3. I. Voigt, M. Stahn, St. Wöhner, A. Junghans, J. Rost, and W. Voigt, "Integrated cleaning of coloured waste water by ceramic NF membranes", Separation and Purification Technology, 25, 509 (2001). https://doi.org/10.1016/S1383-5866(01)00081-8
  4. Y. Juttke, H. Richter, I. Voigt, R. M. Prasad, M. S. Bazarjani, A. Gurlo, and R. Riedel, "Polymer derived ceramic membranes for gas separation", Chemical Engineering Transactions, 32, 1891 (2013).
  5. H. Richter, H. Voss, N. Kaltenborn, S. Kämnitz, A. Feldhoff, J. Caro, S. Roitsch, I. Voigt, and A. Wollbrink, "High‐flux carbon molecular sieve membranes for gas separation", Angew. Chem. Int. Ed., 56, 7760 (2017). https://doi.org/10.1002/anie.201701851
  6. http://dcssi.istm.cnr.it/CORSO%20IPERTESTUALE/StatoSolido/Zeoliti_11/images/Image645.jpg.
  7. Ch. Baerlocher and L. B. McCusker, Database of Zeolite Structures: http://www.iza-structure.org/databases/.
  8. D. Sherman, "Synthetic zeolites and other microporous oxide molecular sieves", Proc. Natl. Acad. Sci. USA, 96, 3471 (1999). https://doi.org/10.1073/pnas.96.7.3471
  9. Weyd, M. Thesis, "Charakterisierung hydrophober ZSM-5 Zeolithmembranen und deren Anwendung zur Trennung von Wasser-Ethanol-Gemischen durch Pervaporation", ISBN 978-3-939665-55-7 (2008).
  10. K. J. Sladek, E. R. Gilliland, and R. F. Baddour, "Diffusion on surfaces. II. correlation of diffusivities of physically and chemically adsorbed species", Ind. Eng. Chem. Fundam., 13, 100 (1974). https://doi.org/10.1021/i160050a002
  11. M. Hanebuth, R. Dittmeyer, G. T. P. Mabande, and W. Schwieger, "On the combination of different transport mechanisms for the simulation of steady-state mass transfer through composite systems using $H_2/SF_6$ permeation through stainless steel supported silicalite-1 membranes as a model system", Catalysis Today, 104, 352 (2005). https://doi.org/10.1016/j.cattod.2005.03.057
  12. G. E. Hales, "Drying reactive fluids with molecular sieves", Chem. Eng. Prog., 67, 49 (1971).
  13. Y. Morigami, M. Kondo, J. Abe, H. Kita, and K. Okamoto, "The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane", Separation and Purification technology, 25, 251 (2001). https://doi.org/10.1016/S1383-5866(01)00109-5
  14. J. Caro and M. Noack, "Zeolite membranes-recent developments and progress", Micropor. Mesopor. Mater., 115, 215 (2008). https://doi.org/10.1016/j.micromeso.2008.03.008
  15. M. Weyd, H. Richter, J.-Th. Kuhnert, I. Voigt, E. Tusel, and H. Bruschke, "Effiziente entwasserung von ethanol durch zeolithmembranen in vierkanalgeometrie", Chemie Ingenieur Technik, 82, 1257 (2010). https://doi.org/10.1002/cite.201000092
  16. M. Noack, P. Kolsch, A. Dittmar, M. Stöhr, G. Georgi, M. Schneider, U. Dingerdissen, A. Feldhoff, and J. Caro, "Proof of the ISS-concept for LTA and FAU membranes and their characterization by extended gas permeation studies", Micropor. Mesopor. Mater., 102, 1 (2007). https://doi.org/10.1016/j.micromeso.2006.12.024
  17. W. Lutz, B. Fahlke, U. Lohse, and R. Seidel, "Investigation of the hydrothermal stabilities of NaA, NaCaA and NaMgA zeolites", Chem. Techn., 35, 250 (1983).
  18. G. T. Kokotailo, "Zeolite structural investigations by high resolution solid state MAS NMR (magic angle spinning nuclear magnetic resonance)" 7th Int. Zeolite Conference, Tokyo, Japan, 17-22 August 1986; Pure Appl. Chem., 58, 1367 (1986).
  19. A. Corma, F. Reyl, J. Rius, M. J. Sabater, and S. Valencial, "Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites", Nature, 431, 287 (2004). https://doi.org/10.1038/nature02909
  20. Ch. Günther, H. Richter, I. Voigt, "Zeolite membranes for hydrogen and water separation under harsh conditions", Chemical Engineering Transactions, 31, 1963 (2013)
  21. A. Huang, and J. Caro, "Hydrothermal synthesis of uniform and well-shaped ITQ-29 crystals", Micropor. Mesopor. Mater., 124, 153 (2009). https://doi.org/10.1016/j.micromeso.2009.05.004
  22. A. Huang, C. Weidenthaler, and J. Caro, "Facile and reproducible synthesis of ITQ-29 zeolite by using Kryptofix 222 as the structure directing agent", Micropor. Mesopor. Mater., 130, 352 (2010). https://doi.org/10.1016/j.micromeso.2009.10.021
  23. A. Huang, and J. Caro, "Preparation of large and well-shaped LTA-type AlPO4 crystals by using crown ether Kryptofix 222 as structure directing agent", Micropor. Mesopor. Mater., 129, 90 (2010). https://doi.org/10.1016/j.micromeso.2009.09.002
  24. A. Huang, F. Liang, F. Steinbach, T. M. Gesing, and J. Caro, "Neutral and cation-free LTA-type aluminophosphate ($AlPO_4$) molecular sieve membrane with high hydrogen permselectivity", J. Am. Chem. Soc., 132, 2140 (2010). https://doi.org/10.1021/ja100042x
  25. S. Khajavi, F. Kapteijn, and J. C. Jansen, "Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation", J. Membr. Sci., 299, 63 (2007). https://doi.org/10.1016/j.memsci.2007.04.027
  26. X. Xu, Y. Bao, C. Song, W. Yang, J. Liu, and L. Lin, "Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane", Micropor. Mesopor. Mater., 75, 173 (2004). https://doi.org/10.1016/j.micromeso.2004.07.019
  27. D. M. Bibby and M. P. Dale, "Synthesis of silica-sodalite from non-aqueous systems", Nature, 317, 157 (1985). https://doi.org/10.1038/317157a0
  28. S. Munzer, J. Caro, and P. Behrens, "Preparation and characterization of sodium-free nanocrystalline sodalite", Micropor. Mesopor. Mater., 110, 3 (2008). https://doi.org/10.1016/j.micromeso.2007.07.040