Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.6.345

Ni Nanoparticle-Graphene Oxide Composites for Speedy and Efficient Removal of Cr(VI) from Wastewater  

Wang, Wan-Xia (Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University)
Zhao, Dong-Lin (Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University)
Wu, Chang-Nian (Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University)
Chen, Yan (Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University)
Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
Publication Information
Korean Journal of Materials Research / v.31, no.6, 2021 , pp. 345-352 More about this Journal
Abstract
In this study, Ni nanoparticle supported by graphene oxide (GO) (Ni-GO) is successfully synthesized through hydrothermal synthesis and calcination, and Cr(VI) is extracted from aqueous solution. The morphology and structure of Ni-GO composites are characterized by scanning electron microscopy (SEM), trans mission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). High-resolution transmission electron microscopy (HRTEM) and XRD confirms the high dispersion of Ni nanoparticle after support by GO. Loading Ni on GO can obviously enhance the stability of Ni-GO composites. It can be calculated from TGA that the mass percentage of Ni is about 60.67 %. The effects of initial pH and reaction time on Cr(VI) removal ability of Ni-GO are investigated. The results indicate that the removal efficiency of Cr(VI) is greater than that of bared GO. Ni-GO shows fast removal capacity for Cr(VI) (<25 min) with high removal efficiency. Dynamic experiments show that the removal process conforms to the quasi-second order model of adsorption, which indicates that the rate control step of the removal process is chemical adsorption. The removal capacity increases with the increase of temperature, indicating that the reaction of Cr(VI) on Ni-GO composites is endothermic and spontaneous. Combined with tests and characterization, the mechanism of Cr(VI) removal by rapidly adsorption on the surface of Ni-GO and reduction by Ni nanoparticle is investigated. The above results show that Ni-GO can be used as a potential remediation agent for Cr(VI)-contaminated groundwater.
Keywords
Ni; graphene oxide; Cr(VI); adsorption; reduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Q. P. Kong, J. Y. Wei, Y. Hu and C. H. Wei, J. Hazard. Mater., 363, 161 (2019).   DOI
2 J. M. Englert, C. Dotzer, G. Yang, M. Schmid, C. Papp, J. M. Gottfried, H. P. Steinruck, E. Spiecker, F. Hauke and A. Hirsch, Nat. Chem., 3, 279 (2011).   DOI
3 Y. A. Li, Y. J. Chen and N. H. Tai, Langmuir, 29, 8433 (2013).   DOI
4 Z. S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li and H. M. Cheng, ACS Nano, 4, 3187 (2010).   DOI
5 B. T. Dong, X. Zhang, X. Xu, G. X. Gao, S. J. Ding, J. Li and B. B. Li, Carbon, 80, 222 (2014).   DOI
6 L. L. Chen, S. J. Feng, D. L. Zhao, S. H. Chen, F. F. Li and C. L. Chen, J. Colloid Interface Sci., 490, 197 (2017).   DOI
7 J. Balamurugan, T. D. Thanh, S. B. Heo, N. H. Kim and J. H. Lee, Carbon, 94, 962 (2015).   DOI
8 J. Chen, K. X. Sheng, P. H. Luo, C. Li and G. Q. Shi, Adv. Mater., 24, 4569 (2012).   DOI
9 T. Ahmed, S. N. Xiu, L. J. Wang and A. Shahbazi, Fuel, 211, 566 (2018).   DOI
10 Y. Zhao, D. L. Zhao, C. L. Chen and X. K. Wang, J. Colloid Interface Sci., 405, 211 (2013).   DOI
11 Z. Qu, L. Q. Kou, T. C. Wang, D. L. Ang and S. B. Hu, J. Environ. Manage., 201, 378 (2017).   DOI
12 D. L. Zhao, L. L. Chen, M. W. C. Xu, S. J. Feng, Y. Ding, M. Wakeel, N. S. Alharbi and C. L. Chen, ACS Sustainable Chem. Eng., 5, 10290 (2017).   DOI
13 M. V. Dinu and E. S. Dragan, Chem. Eng. J., 160, 157 (2010).   DOI
14 Z. Y. Zhang, P. P. Xu, Y. Weng, Y. Y. Zhou and S. S. Xiong, J. Alloys Compd., 847, 156366 (2020).   DOI
15 Z. Q. Fang, X. H. Qiu, J. H. Chen and X. Q. Qiu, J. Hazard. Mater., 185, 958 (2011).   DOI
16 L. Liu, J. Xue, X. Shan, G. He, X. Wang and H. Chen, Catal. Commun., 75, 13 (2016).   DOI
17 Y. Zhang, M. Yang, X. M. Dou, H. He and D. S. Wang, Environ. Sci. Technol., 39, 7246 (2005).   DOI
18 J. Li, C. L. Chen, Y. Zhao, J. Hu, D. D. Shao and X. K. Wang, Chem. Eng. J., 229, 296 (2013).   DOI
19 J. Li, X. X. Wang, G. X. Zhao, C. L. Chen, Z. F. Chai, A. Alsaedi, T. Hayat and X. K. Wang, Chem. Soc. Rev., 47, 2322 (2018).   DOI
20 F. Qin, R. Wang, G. Li, F. Tian, H. Zhao and R. Chen, Catal. Commun., 42, 14 (2013).   DOI
21 C. T. Chien, S. S. Li, W. J. Lai, Y. C. Yeh, H. A. Chen, I. S. Chen, L. C. Chen, K. H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla and C. W. Chen, Angew. Chem. Int. Ed., 51, 6662 (2012).   DOI
22 W. T. Zhu, C. J. Wu, Y. X. Chang, H. C. Cheng and C. B. Yuk, Mater. Lett., 237, 1 (2019).   DOI
23 B. Zeynizadeh and S. Karami, Polyhedron, 166, 196 (2019).   DOI
24 H. Bi, H. L. Cui, T. Q. Lin and F. Q. Huang, Carbon, 91, 153 (2015).   DOI
25 K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prudhomme, I. A. Aksay and R. Car, Nano Lett., 8, 36 (2008).   DOI
26 D. L. Zhao, X. Gao, S. H. Chen, F. Z. Xie, S. J. Feng, A. Alsaedi, T. Hayat and C. L. Chen, J. Colloid Interface Sci., 524, 129 (2018).   DOI
27 C. H. Wu, J. Hazard. Mater., 144, 93 (2007).   DOI
28 Q. Zhang, D. L. Zhao, Y. Ding, Y. Chen, F. F. Li, A. Alsaedi, T. Hayat and C. L. Chen, J. Clean. Prod., 230, 1305 (2019).   DOI
29 B. Koushik, M. Arnab, K. M. Manish and D. Goutam, Langmuir, 30, 3209 (2014).   DOI
30 Y. H. Cao, J. N. Huang, Y. H. Li, S. Qiu, J. R. Liu, A. Khasanov, M. A. Khan, D. P. Young, F. Peng, D. P. Cao, X. F. Peng, K. L. Hong and Z. H. Guo, Carbon, 109, 640 (2016).   DOI
31 Y. Q. Wang, B. F. Zou, T. Gao, X. P. Wu, S. Y. Lou and S. M. Zhou, J. Mater. Chem., 22, 9034 (2012).   DOI
32 A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).   DOI
33 Z. W. Huang, Z. J. Li, L. R. Zheng, W. S. Wu, Z. F. Chai and W. Q. Shi, Environ. Pollut., 248, 82 (2019).   DOI
34 L. L. Fan, C. N. Luo, M. Sun and H. M. Qiu, J. Mater. Chem., 47, 24577 (2012).
35 L. Y. Hu, L. X. Chen, M. T. Liu, A. J. Wang, L. J. Wu and J. J. Feng, J. Colloid Interface Sci., 493, 94 (2017).   DOI
36 S. Rapti, D. Sarma, S. A. Diamantis, E. Skliri, G. S. Armatas, A. C. Tsipis, Y. S. Hassan, M. Alkordi, C. D. Malliakas, M. G. Kanatzidis, T. Lazarides, J. C. Plakatouras and M. J. Manos, J. Mater. Chem. A, 5, 14707 (2017).   DOI
37 A. H. Smith and C. M. Steinmaus, Annu. Rev. Public Health, 30, 107 (2009).   DOI
38 J. B. Vincent, Acc. Chem. Res., 33, 503 (2000).   DOI
39 M. Yadav and Q. Xu, Chem. Commun., 49, 3327 (2013).   DOI
40 D. Dinda, A. Gupta and S. K. Saha, J. Mater. Chem. A, 1, 11221 (2013).   DOI