Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.6.469

Zeolite Membranes: Functionalizing of Properties by Tailored Compositions  

Richter, Hannes (Fraunhofer Institute for Ceramic Technologies and Systems - Hermsdorf branch)
Weyd, Marcus (Fraunhofer Institute for Ceramic Technologies and Systems - Hermsdorf branch)
Simon, Adrian (Fraunhofer Institute for Ceramic Technologies and Systems - Hermsdorf branch)
Kuhnert, Jan-Thomas (Fraunhofer Institute for Ceramic Technologies and Systems - Hermsdorf branch)
Gunther, Christiane (Fraunhofer Institute for Ceramic Technologies and Systems - Hermsdorf branch)
Voigt, Ingolf (Fraunhofer Institute for Ceramic Technologies and Systems - Hermsdorf branch)
Michaelis, Alexander (Fraunhofer Institute for Ceramic Technologies and Systems - Hermsdorf branch)
Publication Information
Membrane Journal / v.27, no.6, 2017 , pp. 469-476 More about this Journal
Abstract
Membrane separation is a technology of low energy consumption. Membranes made of zeolites are of great interest because their fixed and open pores in the size of small molecules inside crystalline structures allow separation processes under harsh conditions. While zeolite NaA (LTA-type) is industrially used for dewatering of organic solvents, its pore size and thermal and hydrothermal stability can be tuned by exchange of framework and extra-framework elements. SOD with pores of only 0.28 nm is of great interest for $H_2$- und $H_2O$-separation and also can be tuned by ion exchange. Zeolites open the opportunity to create membranes of adapted separation behavior for small molecules in conditions of surrounding technical processes.
Keywords
zeolites; microporous membranes; molecular sieve; gas separation from mixtures;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Munzer, J. Caro, and P. Behrens, "Preparation and characterization of sodium-free nanocrystalline sodalite", Micropor. Mesopor. Mater., 110, 3 (2008).   DOI
2 K. J. Sladek, E. R. Gilliland, and R. F. Baddour, "Diffusion on surfaces. II. correlation of diffusivities of physically and chemically adsorbed species", Ind. Eng. Chem. Fundam., 13, 100 (1974).   DOI
3 M. Hanebuth, R. Dittmeyer, G. T. P. Mabande, and W. Schwieger, "On the combination of different transport mechanisms for the simulation of steady-state mass transfer through composite systems using $H_2/SF_6$ permeation through stainless steel supported silicalite-1 membranes as a model system", Catalysis Today, 104, 352 (2005).   DOI
4 G. E. Hales, "Drying reactive fluids with molecular sieves", Chem. Eng. Prog., 67, 49 (1971).
5 Y. Morigami, M. Kondo, J. Abe, H. Kita, and K. Okamoto, "The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane", Separation and Purification technology, 25, 251 (2001).   DOI
6 J. Caro and M. Noack, "Zeolite membranes-recent developments and progress", Micropor. Mesopor. Mater., 115, 215 (2008).   DOI
7 M. Weyd, H. Richter, J.-Th. Kuhnert, I. Voigt, E. Tusel, and H. Bruschke, "Effiziente entwasserung von ethanol durch zeolithmembranen in vierkanalgeometrie", Chemie Ingenieur Technik, 82, 1257 (2010).   DOI
8 M. Noack, P. Kolsch, A. Dittmar, M. Stöhr, G. Georgi, M. Schneider, U. Dingerdissen, A. Feldhoff, and J. Caro, "Proof of the ISS-concept for LTA and FAU membranes and their characterization by extended gas permeation studies", Micropor. Mesopor. Mater., 102, 1 (2007).   DOI
9 W. Lutz, B. Fahlke, U. Lohse, and R. Seidel, "Investigation of the hydrothermal stabilities of NaA, NaCaA and NaMgA zeolites", Chem. Techn., 35, 250 (1983).
10 G. T. Kokotailo, "Zeolite structural investigations by high resolution solid state MAS NMR (magic angle spinning nuclear magnetic resonance)" 7th Int. Zeolite Conference, Tokyo, Japan, 17-22 August 1986; Pure Appl. Chem., 58, 1367 (1986).
11 US Department of Energy; Industrial Technologies Program; Energy Efficiency and Renewable Energy, Report "Materials for Separation Technologies: Energy and Emission Reduction Opportunities" (2005).
12 A. Corma, F. Reyl, J. Rius, M. J. Sabater, and S. Valencial, "Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites", Nature, 431, 287 (2004).   DOI
13 Ch. Günther, H. Richter, I. Voigt, "Zeolite membranes for hydrogen and water separation under harsh conditions", Chemical Engineering Transactions, 31, 1963 (2013)
14 A. Huang, and J. Caro, "Hydrothermal synthesis of uniform and well-shaped ITQ-29 crystals", Micropor. Mesopor. Mater., 124, 153 (2009).   DOI
15 H. Richter, A. Piorra, and G. Tomandl, "Developing of ceramic membranes for nanofiltration", Key Engineering Materials, 132-136, 1715 (1997).   DOI
16 http://dcssi.istm.cnr.it/CORSO%20IPERTESTUALE/StatoSolido/Zeoliti_11/images/Image645.jpg.
17 I. Voigt, M. Stahn, St. Wöhner, A. Junghans, J. Rost, and W. Voigt, "Integrated cleaning of coloured waste water by ceramic NF membranes", Separation and Purification Technology, 25, 509 (2001).   DOI
18 Y. Juttke, H. Richter, I. Voigt, R. M. Prasad, M. S. Bazarjani, A. Gurlo, and R. Riedel, "Polymer derived ceramic membranes for gas separation", Chemical Engineering Transactions, 32, 1891 (2013).
19 H. Richter, H. Voss, N. Kaltenborn, S. Kämnitz, A. Feldhoff, J. Caro, S. Roitsch, I. Voigt, and A. Wollbrink, "High‐flux carbon molecular sieve membranes for gas separation", Angew. Chem. Int. Ed., 56, 7760 (2017).   DOI
20 Ch. Baerlocher and L. B. McCusker, Database of Zeolite Structures: http://www.iza-structure.org/databases/.
21 S. Khajavi, F. Kapteijn, and J. C. Jansen, "Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation", J. Membr. Sci., 299, 63 (2007).   DOI
22 A. Huang, C. Weidenthaler, and J. Caro, "Facile and reproducible synthesis of ITQ-29 zeolite by using Kryptofix 222 as the structure directing agent", Micropor. Mesopor. Mater., 130, 352 (2010).   DOI
23 A. Huang, and J. Caro, "Preparation of large and well-shaped LTA-type AlPO4 crystals by using crown ether Kryptofix 222 as structure directing agent", Micropor. Mesopor. Mater., 129, 90 (2010).   DOI
24 A. Huang, F. Liang, F. Steinbach, T. M. Gesing, and J. Caro, "Neutral and cation-free LTA-type aluminophosphate ($AlPO_4$) molecular sieve membrane with high hydrogen permselectivity", J. Am. Chem. Soc., 132, 2140 (2010).   DOI
25 X. Xu, Y. Bao, C. Song, W. Yang, J. Liu, and L. Lin, "Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane", Micropor. Mesopor. Mater., 75, 173 (2004).   DOI
26 D. M. Bibby and M. P. Dale, "Synthesis of silica-sodalite from non-aqueous systems", Nature, 317, 157 (1985).   DOI
27 Weyd, M. Thesis, "Charakterisierung hydrophober ZSM-5 Zeolithmembranen und deren Anwendung zur Trennung von Wasser-Ethanol-Gemischen durch Pervaporation", ISBN 978-3-939665-55-7 (2008).
28 D. Sherman, "Synthetic zeolites and other microporous oxide molecular sieves", Proc. Natl. Acad. Sci. USA, 96, 3471 (1999).   DOI